Skip to content

FluxSand/ModelTrainer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IMU Motion Analysis Toolkit

Tools for IMU sensor data processing and visualization

Usage

git clone --depth=1 https://github.com/FluxSand/Dataset.git Dataset
python train.py
# cp model.onnx XXX

📦 Files

1. CNN Motion Classifier (train.py)

Features:

  • Advanced data preprocessing pipeline
    • Sequence padding & normalization
    • Stratified dataset splitting
  • ONNX model export capability
  • Embedded early stopping & learning rate scheduling

2. IMU Data Visualizer (imu_visualizer.py)

Features:

  • Interactive CSV file management
    • File browsing & deletion
    • Auto-refresh directory
  • Multi-view sensor visualization
    • 3D pose animation with adjustable parameters
    • Synchronized 2D plots (Pitch/Roll/Gyro/Accel)
    • Enhanced real-time data updates
  • Customizable playback controls
    • Frame skip ratio (1-50)
    • Speed adjustment (10-200ms)
    • Interactive zoom and rotation

Requirements:

numpy~=2.0.2
pandas~=2.2.3
tensorflow~=2.18.0
tf2onnx~=1.16.1
onnx~=1.17.0
scipy~=1.15.1
imblearn~=0.0
scikit-learn~=1.6.1
matplotlib~=3.10.0
ttkbootstrap~=1.10.1

📂 Dataset Structure

Each CSV should contain:

Pitch,Roll,Gyro_X,Gyro_Y,Gyro_Z,Accel_X,Accel_Y,Accel_Z

📸 Sample Output

Classifier Training:

Epoch 150/2000
187/187 [==============================] - 15s 78ms/step - loss: 0.0327 - accuracy: 0.7215
Val accuracy: 0.6982 → Best model saved

Visualizer Interface: IMU Visualizer Screenshot IMU Visualizer Screenshot