Tools for IMU sensor data processing and visualization
git clone --depth=1 https://github.com/FluxSand/Dataset.git Dataset
python train.py
# cp model.onnx XXX
Features:
- Advanced data preprocessing pipeline
- Sequence padding & normalization
- Stratified dataset splitting
- ONNX model export capability
- Embedded early stopping & learning rate scheduling
Features:
- Interactive CSV file management
- File browsing & deletion
- Auto-refresh directory
- Multi-view sensor visualization
- 3D pose animation with adjustable parameters
- Synchronized 2D plots (Pitch/Roll/Gyro/Accel)
- Enhanced real-time data updates
- Customizable playback controls
- Frame skip ratio (1-50)
- Speed adjustment (10-200ms)
- Interactive zoom and rotation
Requirements:
numpy~=2.0.2
pandas~=2.2.3
tensorflow~=2.18.0
tf2onnx~=1.16.1
onnx~=1.17.0
scipy~=1.15.1
imblearn~=0.0
scikit-learn~=1.6.1
matplotlib~=3.10.0
ttkbootstrap~=1.10.1
Each CSV should contain:
Pitch,Roll,Gyro_X,Gyro_Y,Gyro_Z,Accel_X,Accel_Y,Accel_Z
Classifier Training:
Epoch 150/2000
187/187 [==============================] - 15s 78ms/step - loss: 0.0327 - accuracy: 0.7215
Val accuracy: 0.6982 → Best model saved