Skip to content

FrancescoLuzzi/Tesi

Repository files navigation

Tesi

Basics of the project

The tags to launch this program are:

  • -i to give a relative or absolute path to an image to ingest, if omitted default to the camera;
  • -o to give the path to the output image, if omitted an image will pop up;
  • -m to detect multiple people, if omitted default to single detection.
  • -g to use gpu accelerated flow with OpenCv compiled with CUDA support (only with custom installation, tutorial below)
  • -d select a directory to process (mutually exclusive with -i), -o behaviour changes to the output directory's name (requested)
  • -p cover detected faces

OpenPose's License.

OpenPose's README.md.

Prerequisites

Python version

Support code

components/models/model_multiple.py

...

class MultipleDetectionsModel(Model):

...

    def get_keypoints(self, prob_map) -> List[Tuple[List[int], float]]:
        ...
        # to retrive the prob_maps for probMapsRetreiver.py .model.extrapolate_prob_map(prob_map)
        ...

...

    def get_valid_pairs(
            self, model_detections, frame_width: int, frame_height: int
        ) -> Tuple[List[NDArray], List[int]]:
        ...
        # to show the heatmaps run: .model.show_heatmap(paf_a,frame), .model.show_heatmap(paf_b,frame)
        # YOU NEED TO PASS THE FRAME AS AN ARGUMENT FROM find_detections
        ...

...

The implementations of extrapolate_prob_map and show_heatmap are in components/models/model.py

probMapsRetreiver.py is used to parse the debug output of the probability map you'll need to use:

extrapolate_prob_map(prob_map)

ProbMapPlotter.py can be used after running probMapsRetreiver and uses Matplotlib to display the different prob maps

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages