Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update 5.4-2.1.x-imx up to v5.4.199 #588

Merged
merged 17 commits into from
Jun 16, 2022

Conversation

zandrey
Copy link

@zandrey zandrey commented Jun 16, 2022

Automatic merge performed, no conflicts reported.

Kernel has been built for aarch64 (defconfig).

-- andrey

groeck and others added 17 commits June 16, 2022 13:23
commit 2accfa6 upstream.

0-day is not happy that there is no prototype for cpu_show_srbds():

drivers/base/cpu.c:565:16: error: no previous prototype for 'cpu_show_srbds'

Fixes: 7e5b3c2 ("x86/speculation: Add Special Register Buffer Data Sampling (SRBDS) mitigation")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200617141410.93338-1-linux@roeck-us.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b2d32af upstream.

Japser Lake is an Atom family processor.
It uses Tremont cores and is targeted at mobile platforms.

Reviewed-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
…ntel CPU family

commit e00b62f upstream.

Add three new Intel CPU models.

Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200721043749.31567-1-tony.luck@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6e1239c upstream.

Add Alder Lake mobile CPU model number to Intel family.

Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20210121215004.11618-1-tony.luck@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4419470 upstream

Add the admin guide for Processor MMIO stale data vulnerabilities.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5180218 upstream

Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For more details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst

Add the Processor MMIO Stale Data bug enumeration. A microcode update
adds new bits to the MSR IA32_ARCH_CAPABILITIES, define them.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f52ea6c upstream

Processor MMIO Stale Data mitigation uses similar mitigation as MDS and
TAA. In preparation for adding its mitigation, add a common function to
update all mitigations that depend on MD_CLEAR.

  [ bp: Add a newline in md_clear_update_mitigation() to separate
    statements better. ]

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8cb861e upstream

Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst.

These vulnerabilities are broadly categorized as:

Device Register Partial Write (DRPW):
  Some endpoint MMIO registers incorrectly handle writes that are
  smaller than the register size. Instead of aborting the write or only
  copying the correct subset of bytes (for example, 2 bytes for a 2-byte
  write), more bytes than specified by the write transaction may be
  written to the register. On some processors, this may expose stale
  data from the fill buffers of the core that created the write
  transaction.

Shared Buffers Data Sampling (SBDS):
  After propagators may have moved data around the uncore and copied
  stale data into client core fill buffers, processors affected by MFBDS
  can leak data from the fill buffer.

Shared Buffers Data Read (SBDR):
  It is similar to Shared Buffer Data Sampling (SBDS) except that the
  data is directly read into the architectural software-visible state.

An attacker can use these vulnerabilities to extract data from CPU fill
buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill
buffers using the VERW instruction before returning to a user or a
guest.

On CPUs not affected by MDS and TAA, user application cannot sample data
from CPU fill buffers using MDS or TAA. A guest with MMIO access can
still use DRPW or SBDR to extract data architecturally. Mitigate it with
VERW instruction to clear fill buffers before VMENTER for MMIO capable
guests.

Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control
the mitigation.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e5925fb upstream

MDS, TAA and Processor MMIO Stale Data mitigations rely on clearing CPU
buffers. Moreover, status of these mitigations affects each other.
During boot, it is important to maintain the order in which these
mitigations are selected. This is especially true for
md_clear_update_mitigation() that needs to be called after MDS, TAA and
Processor MMIO Stale Data mitigation selection is done.

Introduce md_clear_select_mitigation(), and select all these mitigations
from there. This reflects relationships between these mitigations and
ensures proper ordering.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 99a83db upstream

When the CPU is affected by Processor MMIO Stale Data vulnerabilities,
Fill Buffer Stale Data Propagator (FBSDP) can propagate stale data out
of Fill buffer to uncore buffer when CPU goes idle. Stale data can then
be exploited with other variants using MMIO operations.

Mitigate it by clearing the Fill buffer before entering idle state.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8d50cdf upstream

Add the sysfs reporting file for Processor MMIO Stale Data
vulnerability. It exposes the vulnerability and mitigation state similar
to the existing files for the other hardware vulnerabilities.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 22cac9c upstream

Currently, Linux disables SRBDS mitigation on CPUs not affected by
MDS and have the TSX feature disabled. On such CPUs, secrets cannot
be extracted from CPU fill buffers using MDS or TAA. Without SRBDS
mitigation, Processor MMIO Stale Data vulnerabilities can be used to
extract RDRAND, RDSEED, and EGETKEY data.

Do not disable SRBDS mitigation by default when CPU is also affected by
Processor MMIO Stale Data vulnerabilities.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a992b8a upstream

The Shared Buffers Data Sampling (SBDS) variant of Processor MMIO Stale
Data vulnerabilities may expose RDRAND, RDSEED and SGX EGETKEY data.
Mitigation for this is added by a microcode update.

As some of the implications of SBDS are similar to SRBDS, SRBDS mitigation
infrastructure can be leveraged by SBDS. Set X86_BUG_SRBDS and use SRBDS
mitigation.

Mitigation is enabled by default; use srbds=off to opt-out. Mitigation
status can be checked from below file:

  /sys/devices/system/cpu/vulnerabilities/srbds

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 027bbb8 upstream

The enumeration of MD_CLEAR in CPUID(EAX=7,ECX=0).EDX{bit 10} is not an
accurate indicator on all CPUs of whether the VERW instruction will
overwrite fill buffers. FB_CLEAR enumeration in
IA32_ARCH_CAPABILITIES{bit 17} covers the case of CPUs that are not
vulnerable to MDS/TAA, indicating that microcode does overwrite fill
buffers.

Guests running in VMM environments may not be aware of all the
capabilities/vulnerabilities of the host CPU. Specifically, a guest may
apply MDS/TAA mitigations when a virtual CPU is enumerated as vulnerable
to MDS/TAA even when the physical CPU is not. On CPUs that enumerate
FB_CLEAR_CTRL the VMM may set FB_CLEAR_DIS to skip overwriting of fill
buffers by the VERW instruction. This is done by setting FB_CLEAR_DIS
during VMENTER and resetting on VMEXIT. For guests that enumerate
FB_CLEAR (explicitly asking for fill buffer clear capability) the VMM
will not use FB_CLEAR_DIS.

Irrespective of guest state, host overwrites CPU buffers before VMENTER
to protect itself from an MMIO capable guest, as part of mitigation for
MMIO Stale Data vulnerabilities.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1dc6ff0 upstream

Similar to MDS and TAA, print a warning if SMT is enabled for the MMIO
Stale Data vulnerability.

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20220614183721.656018793@linuxfoundation.org
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Shuah Khan <skhan@linuxfoundation.org>
Tested-by: Sudip Mukherjee <sudip.mukherjee@codethink.co.uk>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Hulk Robot <hulkrobot@huawei.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This is the 5.4.199 stable release

Signed-off-by: Andrey Zhizhikin <andrey.zhizhikin@leica-geosystems.com>
@otavio otavio merged commit 962e2b5 into Freescale:5.4-2.1.x-imx Jun 16, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

9 participants