Skip to content

Commit

Permalink
Merge pull request #1 from FumiyukiKato/revision
Browse files Browse the repository at this point in the history
Revision
  • Loading branch information
FumiyukiKato authored Mar 2, 2023
2 parents c584fa2 + df5d446 commit 6d31a06
Show file tree
Hide file tree
Showing 22 changed files with 19,641 additions and 1,739 deletions.
64 changes: 64 additions & 0 deletions exp/exp1-no-dp.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
#! /bin/bash
set -ex

# Attack performance fixed label number

for num_of_label in 1 2 3 4 5 6 7 8 9
do
# mnist
# fixed-number
# nn
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attacker_batch_size=32 --attack_from_cache --prefix=exp1-no-dp
# nn-single
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attacker_batch_size=32 --single_model --attack_from_cache --prefix=exp1-no-dp
# clustering (Jac)
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --prefix=exp1-no-dp
done

for num_of_label in 1 2 3 4 5 6 7 8 9
do
## cifar10
# fixed-number, mlp
# nn
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --prefix=exp1-no-dp
# nn-single
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp1-no-dp
# clustering (Jac)
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --prefix=exp1-no-dp
done

for num_of_label in 1 2 3 4 5 6 7 8 9
do
## cifar10
# fixed-number, cnn
# nn
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --prefix=exp1-no-dp
# nn-single
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp1-no-dp
# clustering (Jac)
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --prefix=exp1-no-dp
done

for num_of_label in 1 2 4 8 16
do
## purchase100
# fixed-number
# nn
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --prefix=exp1-no-dp
# nn-single
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp1-no-dp
# clustering (Jac)
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --prefix=exp1-no-dp
done

for num_of_label in 1 2 4 8 16
do
## cifar100
# fixed-number
# nn
# python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --prefix=exp1-no-dp
# nn-single
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp1-no-dp
# clustering (Jac)
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --prefix=exp1-no-dp
done
54 changes: 54 additions & 0 deletions exp/exp10.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
#! /bin/bash
set -ex

# Attack performance for various number of attacker data size

## MNIST
# Fixed number of label
for attacker_data_size in 5000 1000 500 100 50 20 10
do
# mnist
# fixed-number
# nn
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attacker_batch_size=32 --attack_from_cache --attacker_data_size=$attacker_data_size --prefix=exp10
# nn-single
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attacker_batch_size=32 --single_model --attack_from_cache --attacker_data_size=$attacker_data_size --prefix=exp10
# clustering (Jac)
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --attacker_data_size=$attacker_data_size --prefix=exp10
done


## Random number of label
for attacker_data_size in 5000 1000 500 100 50 20 10
do
# nn
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --attacker_batch_size=32 --attack_from_cache --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10
# nn-single
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --attacker_batch_size=32 --single_model --attack_from_cache --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10
# clustering (Jac)
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=3 --attack_from_cache --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10
done


### purchase100
## Fixed number of label
for attacker_data_size in 10000 5000 1000 500 100
do
# nn
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --attacker_batch_size=32 --attacker_data_size=$attacker_data_size --prefix=exp10
# nn-single
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --attacker_batch_size=32 --single_model --attacker_data_size=$attacker_data_size --prefix=exp10
# clustering (Jac)
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --attacker_data_size=$attacker_data_size --prefix=exp10
done

## Random number of label
for attacker_data_size in 10000 5000 1000 500 100
do
# nn
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --attack_from_cache --attacker_batch_size=32 --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10
# nn-single
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --attack_from_cache --attacker_batch_size=32 --single_model --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10
# clustering
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=2 --attack_from_cache --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10
done
64 changes: 64 additions & 0 deletions exp/exp2-no-dp.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
#! /bin/bash
set -ex

# Attack performance variable label number

for num_of_label in 1 2 3 4 5 6 7 8 9
do
## mnist
# variable-number
# nn
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attacker_batch_size=32 --attack_from_cache --random_num_label --prefix=exp2-no-dp
# nn-single
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attacker_batch_size=32 --single_model --attack_from_cache --random_num_label --prefix=exp2-no-dp
# clustering (Jac)
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --attack_from_cache --random_num_label --prefix=exp2-no-dp
done

for num_of_label in 1 2 3 4 5 6 7 8 9
do
## cifar10
# variable-number, mlp
# nn
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --random_num_label --prefix=exp2-no-dp
# nn-single
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --random_num_label --prefix=exp2-no-dp
# clustering (Jac)
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --attack_from_cache --random_num_label --prefix=exp2-no-dp
done

for num_of_label in 1 2 3 4 5 6 7 8 9
do
## cifar10
# variable-number, cnn
# nn
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --random_num_label --prefix=exp2-no-dp
# nn-single
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --random_num_label --prefix=exp2-no-dp
# clustering (Jac)
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --attack_from_cache --random_num_label --prefix=exp2-no-dp
done

for num_of_label in 1 2 4 8 16
do
# purchase100
# variable-number
# nn
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --random_num_label --prefix=exp2-no-dp
# nn-single
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --random_num_label --prefix=exp2-no-dp
# clustering
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --attack_from_cache --random_num_label --prefix=exp2-no-dp
done

for num_of_label in 1 2 4 8 16
do
## cifar100
# variable-number
# nn
# python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --random_num_label --prefix=exp2-no-dp
# nn-single
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --random_num_label --prefix=exp2-no-dp
# clustering (Jac)
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --attack_from_cache --random_num_label --prefix=exp2-no-dp
done
27 changes: 27 additions & 0 deletions exp/exp3-no-dp.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
#! /bin/bash
set -ex

# Attack performance for each sparse ratio

for alpha in 0.0125 0.025 0.05 0.1 0.2 0.4 0.6 0.8
do
# mnist
# fixed-number
# nn
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=$alpha --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attacker_batch_size=32 --attack_from_cache --prefix=exp3-no-dp
# nn-single
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=$alpha --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attacker_batch_size=32 --single_model --attack_from_cache --prefix=exp3-no-dp
# clustering (Jac)
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=$alpha --attack=clustering --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --prefix=exp3-no-dp
done

for alpha in 0.003125 0.00625 0.0125 0.025 0.05 0.1 0.2 0.4 0.6 0.8
do
## cifar100
# fixed-number
# nn if epochs set 1, nn is simlar to nn-single
# nn-single
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=$alpha --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp3-no-dp
# clustering (Jac)
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=$alpha --attack=clustering --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --prefix=exp3-no-dp
done
33 changes: 33 additions & 0 deletions exp/exp4-no-dp.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
#! /bin/bash
set -ex

# Relation between epoch and vulnerability

## mnist
# variable-number, k=3
# alpha=0.1
# nn
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round
# nn-single
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round --single_model
# clustering (Jac)
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=3 --random_num_label --attack_from_cache --prefix=exp4-no-dp --per_round

# alpha=0.8
# nn
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=100 --data_dist=non-IID --optimizer=sgd --alpha=0.8 --attack=nn --num_of_label_k=3 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round
# nn-single
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=100 --data_dist=non-IID --optimizer=sgd --alpha=0.8 --attack=nn --num_of_label_k=3 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round --single_model
# clustering (Jac)
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=100 --data_dist=non-IID --optimizer=sgd --alpha=0.8 --attack=clustering --num_of_label_k=3 --random_num_label --attack_from_cache --prefix=exp4-no-dp --per_round


## cifar10
# variable-number, k=3
# alpha=0.1
# nn
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round
# nn-single
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round --single_model
# clustering (Jac)
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=2 --random_num_label --attack_from_cache --prefix=exp4-no-dp --per_round
13 changes: 13 additions & 0 deletions exp/exp6-no-dp.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
#! /bin/bash
set -ex

## Cacheline-Protection

## cifar10
# fixed-number, cnn
# nn
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --fixed_inference_number=3 --attack_from_cache --attacker_batch_size=32 --prefix=exp6-no-dp --protection=cacheline
# nn-batch
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --fixed_inference_number=3 --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp6-no-dp --protection=cacheline
# clustering
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=3 --fixed_inference_number=3 --attack_from_cache --prefix=exp6-no-dp --protection=cacheline
Loading

0 comments on commit 6d31a06

Please sign in to comment.