-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from FumiyukiKato/revision
Revision
- Loading branch information
Showing
22 changed files
with
19,641 additions
and
1,739 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
#! /bin/bash | ||
set -ex | ||
|
||
# Attack performance fixed label number | ||
|
||
for num_of_label in 1 2 3 4 5 6 7 8 9 | ||
do | ||
# mnist | ||
# fixed-number | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attacker_batch_size=32 --attack_from_cache --prefix=exp1-no-dp | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attacker_batch_size=32 --single_model --attack_from_cache --prefix=exp1-no-dp | ||
# clustering (Jac) | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --prefix=exp1-no-dp | ||
done | ||
|
||
for num_of_label in 1 2 3 4 5 6 7 8 9 | ||
do | ||
## cifar10 | ||
# fixed-number, mlp | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --prefix=exp1-no-dp | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp1-no-dp | ||
# clustering (Jac) | ||
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --prefix=exp1-no-dp | ||
done | ||
|
||
for num_of_label in 1 2 3 4 5 6 7 8 9 | ||
do | ||
## cifar10 | ||
# fixed-number, cnn | ||
# nn | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --prefix=exp1-no-dp | ||
# nn-single | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp1-no-dp | ||
# clustering (Jac) | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --prefix=exp1-no-dp | ||
done | ||
|
||
for num_of_label in 1 2 4 8 16 | ||
do | ||
## purchase100 | ||
# fixed-number | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --prefix=exp1-no-dp | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp1-no-dp | ||
# clustering (Jac) | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --prefix=exp1-no-dp | ||
done | ||
|
||
for num_of_label in 1 2 4 8 16 | ||
do | ||
## cifar100 | ||
# fixed-number | ||
# nn | ||
# python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --prefix=exp1-no-dp | ||
# nn-single | ||
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp1-no-dp | ||
# clustering (Jac) | ||
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --fixed_inference_number=$num_of_label --attack_from_cache --prefix=exp1-no-dp | ||
done |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
#! /bin/bash | ||
set -ex | ||
|
||
# Attack performance for various number of attacker data size | ||
|
||
## MNIST | ||
# Fixed number of label | ||
for attacker_data_size in 5000 1000 500 100 50 20 10 | ||
do | ||
# mnist | ||
# fixed-number | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attacker_batch_size=32 --attack_from_cache --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attacker_batch_size=32 --single_model --attack_from_cache --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
# clustering (Jac) | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
done | ||
|
||
|
||
## Random number of label | ||
for attacker_data_size in 5000 1000 500 100 50 20 10 | ||
do | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --attacker_batch_size=32 --attack_from_cache --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --attacker_batch_size=32 --single_model --attack_from_cache --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
# clustering (Jac) | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=3 --attack_from_cache --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
done | ||
|
||
|
||
### purchase100 | ||
## Fixed number of label | ||
for attacker_data_size in 10000 5000 1000 500 100 | ||
do | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --attacker_batch_size=32 --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --attacker_batch_size=32 --single_model --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
# clustering (Jac) | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
done | ||
|
||
## Random number of label | ||
for attacker_data_size in 10000 5000 1000 500 100 | ||
do | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --attack_from_cache --attacker_batch_size=32 --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --attack_from_cache --attacker_batch_size=32 --single_model --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
# clustering | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=2 --attack_from_cache --random_num_label --attacker_data_size=$attacker_data_size --prefix=exp10 | ||
done |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
#! /bin/bash | ||
set -ex | ||
|
||
# Attack performance variable label number | ||
|
||
for num_of_label in 1 2 3 4 5 6 7 8 9 | ||
do | ||
## mnist | ||
# variable-number | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attacker_batch_size=32 --attack_from_cache --random_num_label --prefix=exp2-no-dp | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attacker_batch_size=32 --single_model --attack_from_cache --random_num_label --prefix=exp2-no-dp | ||
# clustering (Jac) | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --attack_from_cache --random_num_label --prefix=exp2-no-dp | ||
done | ||
|
||
for num_of_label in 1 2 3 4 5 6 7 8 9 | ||
do | ||
## cifar10 | ||
# variable-number, mlp | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --random_num_label --prefix=exp2-no-dp | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --random_num_label --prefix=exp2-no-dp | ||
# clustering (Jac) | ||
python src/fl_main.py --model=mlp --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --attack_from_cache --random_num_label --prefix=exp2-no-dp | ||
done | ||
|
||
for num_of_label in 1 2 3 4 5 6 7 8 9 | ||
do | ||
## cifar10 | ||
# variable-number, cnn | ||
# nn | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --random_num_label --prefix=exp2-no-dp | ||
# nn-single | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --random_num_label --prefix=exp2-no-dp | ||
# clustering (Jac) | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --attack_from_cache --random_num_label --prefix=exp2-no-dp | ||
done | ||
|
||
for num_of_label in 1 2 4 8 16 | ||
do | ||
# purchase100 | ||
# variable-number | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --random_num_label --prefix=exp2-no-dp | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --random_num_label --prefix=exp2-no-dp | ||
# clustering | ||
python src/fl_main.py --model=mlp --dataset=purchase100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --attack_from_cache --random_num_label --prefix=exp2-no-dp | ||
done | ||
|
||
for num_of_label in 1 2 4 8 16 | ||
do | ||
## cifar100 | ||
# variable-number | ||
# nn | ||
# python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --random_num_label --prefix=exp2-no-dp | ||
# nn-single | ||
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=$num_of_label --attack_from_cache --attacker_batch_size=32 --single_model --random_num_label --prefix=exp2-no-dp | ||
# clustering (Jac) | ||
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=$num_of_label --attack_from_cache --random_num_label --prefix=exp2-no-dp | ||
done |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
#! /bin/bash | ||
set -ex | ||
|
||
# Attack performance for each sparse ratio | ||
|
||
for alpha in 0.0125 0.025 0.05 0.1 0.2 0.4 0.6 0.8 | ||
do | ||
# mnist | ||
# fixed-number | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=$alpha --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attacker_batch_size=32 --attack_from_cache --prefix=exp3-no-dp | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=$alpha --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attacker_batch_size=32 --single_model --attack_from_cache --prefix=exp3-no-dp | ||
# clustering (Jac) | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=$alpha --attack=clustering --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --prefix=exp3-no-dp | ||
done | ||
|
||
for alpha in 0.003125 0.00625 0.0125 0.025 0.05 0.1 0.2 0.4 0.6 0.8 | ||
do | ||
## cifar100 | ||
# fixed-number | ||
# nn if epochs set 1, nn is simlar to nn-single | ||
# nn-single | ||
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=$alpha --attack=nn --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp3-no-dp | ||
# clustering (Jac) | ||
python src/fl_main.py --model=cnn --dataset=cifar100 --epochs=1 --seed=0 --frac=0.1 --num_users=1000 --num_classes=100 --data_dist=non-IID --optimizer=sgd --alpha=$alpha --attack=clustering --num_of_label_k=2 --fixed_inference_number=2 --attack_from_cache --prefix=exp3-no-dp | ||
done |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
#! /bin/bash | ||
set -ex | ||
|
||
# Relation between epoch and vulnerability | ||
|
||
## mnist | ||
# variable-number, k=3 | ||
# alpha=0.1 | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round --single_model | ||
# clustering (Jac) | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=3 --random_num_label --attack_from_cache --prefix=exp4-no-dp --per_round | ||
|
||
# alpha=0.8 | ||
# nn | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=100 --data_dist=non-IID --optimizer=sgd --alpha=0.8 --attack=nn --num_of_label_k=3 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round | ||
# nn-single | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=100 --data_dist=non-IID --optimizer=sgd --alpha=0.8 --attack=nn --num_of_label_k=3 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round --single_model | ||
# clustering (Jac) | ||
python src/fl_main.py --model=mlp --dataset=mnist --epochs=10 --seed=0 --frac=0.1 --num_users=100 --data_dist=non-IID --optimizer=sgd --alpha=0.8 --attack=clustering --num_of_label_k=3 --random_num_label --attack_from_cache --prefix=exp4-no-dp --per_round | ||
|
||
|
||
## cifar10 | ||
# variable-number, k=3 | ||
# alpha=0.1 | ||
# nn | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round | ||
# nn-single | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=2 --random_num_label --attacker_batch_size=32 --attack_from_cache --prefix=exp4-no-dp --per_round --single_model | ||
# clustering (Jac) | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=10 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=2 --random_num_label --attack_from_cache --prefix=exp4-no-dp --per_round |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
#! /bin/bash | ||
set -ex | ||
|
||
## Cacheline-Protection | ||
|
||
## cifar10 | ||
# fixed-number, cnn | ||
# nn | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --fixed_inference_number=3 --attack_from_cache --attacker_batch_size=32 --prefix=exp6-no-dp --protection=cacheline | ||
# nn-batch | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=nn --num_of_label_k=3 --fixed_inference_number=3 --attack_from_cache --attacker_batch_size=32 --single_model --prefix=exp6-no-dp --protection=cacheline | ||
# clustering | ||
python src/fl_main.py --model=cnn --dataset=cifar10 --epochs=3 --seed=0 --frac=0.1 --num_users=1000 --data_dist=non-IID --optimizer=sgd --alpha=0.1 --attack=clustering --num_of_label_k=3 --fixed_inference_number=3 --attack_from_cache --prefix=exp6-no-dp --protection=cacheline |
Oops, something went wrong.