Skip to content

Allan variance approach for characterizing inertial signals

Notifications You must be signed in to change notification settings

GAVLab/allan_variance

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

allan_variance

Code for IMU characterization using Allan variance techniques. Plays nicely with ROS bagfiles.

Installing Dependencies

Install pip (if necessary)

sudo easy_install pip

Install allantools (https://github.com/aewallin/allantools)

sudo pip install allantools

Usage

A launch file is provided for using the allan.py script. The script parses a bagfile and performs allan variance on the specified topic and IMU axis.

Parameters

~bagfile_path (string, default: "")

  • The global path to the bagile containing static IMU data.

~imu_topic_name (string, default: "/imu")

  • The name of the IMU topic within the bagfile.
  • Note: topic must be of the sensor_msgs/Imu type.

~axis (int, default: 0)

  • Specify which axis/measurement to perform the allan variance. (0 = all six axes, 1 = x-accel, 2 = y-accel, 3 = z-accel, 4 = x-gyro, 5 = y-gyro, 6 = z-gyro).

~sample_rate (int, default: 100)

  • The sample rate of the IMU in Hz.

~delta_measurement (bool, default: false)

  • 'true' if delta measurements (change in angle/velocity)

  • 'false' if rate measurements (rotation rate/acceleration)

~number_of_lags (int, default: 1000)

  • The number of lags (tau values) used in calculating the allan variance.

~results_directory_path (string, default: None)

  • The path to the directory where the results should be stored.
  • If left unspecified, a directory will be created in the workspace (e.g. ~/allan_ws/av_results/allan_accel_x.csv).

To do

  • write node that subscribes to IMU topic and calculates Allan variance periodically. Inform user when the AV is within an acceptable amount of error
  • use allantools visualization to show a plot of the resulting allan variance and errors
  • calculate values for random walk and bias instability based on result
  • incorporate other intertial characterization techniques (simulation, Monte Carlo, autocorrelation, etc.)

Maintainer

Dan Pierce (jdp0009@auburn.edu)

About

Allan variance approach for characterizing inertial signals

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published