Skip to content
/ PTD Public

The repository for Propagation then Distillation: Understanding and Improving Linear GCNs for Recommendation

Notifications You must be signed in to change notification settings

GabyUSTC/PTD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PTD

This is the Pytorch implementation for our paper "Propagation then Distillation: Understanding and Improving Linear GCNs for Recommendation"

Enviroment Requirement

pip install -r requirements.txt

Dataset

We provide four processed datasets: Gowalla, Yelp2018, Home&Kitchen and Amazon-CD.

Commands to Reproduce Our Results

Gowalla: python -u train.py --dataset gowalla --drop_ratio 0.1 --t 0.06 --a 0 --norm_type 0.9 --beta 0.4

Yelp2018: python -u train.py --dataset yelp2018 --drop_ratio 0.1 --t 0.11 --a 20 --norm_type 0.6 --beta 1

Home&Kitchen: python -u train.py --dataset homekitchen --drop_ratio 0.2 --t 0.11 --a 30 --norm_type 1 --beta 1

Amazon_CD: python -u train.py --dataset amazon-cd --drop_ratio 0.2 --t 0.13 --a 30 --norm_type 0.45 --beta 0.1

About

The repository for Propagation then Distillation: Understanding and Improving Linear GCNs for Recommendation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages