Skip to content

[COLING 2024] APOLLO: An Optimized Training Approach for Long-form Numerical Reasoning

Notifications You must be signed in to change notification settings

GasolSun36/APOLLO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

APOLLO: An Optimized Training Approach for Long-form Numerical Reasoning (LREC-Coling 2024)

Our paper is accepted by LREC-Coling 2024 !🥳🥳🥳

This repo provides the code of APOLLO. In the paper, we adopt a number-aware negative sampling strategy in retriever to discriminate key numerical facts from others. Moreover, we design consistency-based reinforcement learning with target program augmentation, to increase program diversity and ultimately increase the execution accuracy.


How to cite

If you extend or use this work, please cite the paper where it was introduced:

@article{sun2022apollo,
  title={APOLLO: An Optimized Training Approach for Long-form Numerical Reasoning},
  author={Sun, Jiashuo and Zhang, Hang and Lin, Chen and Gong, Yeyun and Guo, Jian and Duan, Nan},
  journal={arXiv preprint arXiv:2212.07249},
  year={2022}
}

Leaderboard

The FinQA and ConvFinQA challenge leaderboard is on CodaLab https://codalab.lisn.upsaclay.fr/competitions/4138#results and https://codalab.lisn.upsaclay.fr/competitions/8582#results. APOLLO achieves rank 1 on both datasets.


Requirements

  • pytorch 1.7.1
  • huggingface transformers 4.4.2
  • sympy 1.9

Main Results

Generator Results:

image

Retriever Results:

image


Code

Datasets

The FinQA and ConvFinQA datasets are in /APOLLO/dataset/.In FinQA, there are train,dev and test set. However, in ConvFinQA, there are only train and dev set.

The Retriever

Pre-process

Pre-processing is mainly to process the data of train, dev and test in advance, so that the training and testing stage can directly load these processed data. To pre-process these data, edit data_process.py to set your own project path and some hyperparameters. In particular, if you use number-aware negative sampling during training, edit and run number_aware.py to create the train_number_aware.json file in advance. Specifically, firstly run:

python number_aware.py

Secondly, run:

python data_process.py

Train

To train the retriever, you can run:

python -u -m torch.distributed.launch --nproc_per_node=2 --master_port=8889 Main.py\
--root_path "/APOLLO/" \
--model_save_name retriever-deberta \
--pretrained_model deberta \
--model_size microsoft/deberta-v3-large \
--mode train \
--neg_rate 3 \
--max_seq_length 512 --batch_size 8 --gradient_accumulation_steps 1 \
--learning_rate 2e-5 --epoch 50 --report 500 \
--features_dir /APOLLO/dataset/retriever/ \
--examples_dir /APOLLO/dataset/retriever/ \
--tags 1 \
--dataset_type finqa

Inference

To inference, you can run:

python -u -m torch.distributed.launch --nproc_per_node=1 --master_port=8899 Main.py\
--root_path "/APOLLO/" \
--model_save_name retriever-deberta \
--pretrained_model deberta \
--model_size microsoft/deberta-v3-large \
--mode inference \
--features_dir /APOLLO/dataset/retriever/ \
--examples_dir /APOLLO/dataset/retriever/ \
--saved_model_path "the path of your selected checkpoint in the training" \
--dataset_type finqa --tags 2 

Convert

To convert data for generator training, you can run:

python -u -m torch.distributed.launch --nproc_per_node=1 --master_port=8999 Main.py\
--root_path "/APOLLO/" \
--model_save_name retriever-deberta \
--pretrained_model deberta \
--model_size microsoft/deberta-v3-large \
--mode convert \
--dataset_type finqa --tags 3 

The Generator

Pre-process

To pre-process the data, you can edit and run:

python data_process.py

Train

To train the retriever, you can run:

python -u -m torch.distributed.launch --nproc_per_node=2 --master_port=7889 Main.py\
--root_path "/APOLLO/" \
--model_save_name generator-roberta-large \
--pretrained_model roberta \
--model_size roberta-large \
--mode train \
--retrieve_mode single --program_mode seq \
--max_seq_length 512 --batch_size 8 --gradient_accumulation_steps 1 \
--learning_rate 2e-5 --epoch 50 --max_program_length 30 --report 500 \
--features_dir /APOLLO/dataset/generator/ \
--examples_dir /APOLLO/dataset/generator/ \
--tags 1 \
--dataset_type finqa

Inference

To inference, you can run:

python -u -m torch.distributed.launch --nproc_per_node=1 --master_port=7899 Main.py\
--root_path "/APOLLO/" \
--model_save_name generator-roberta-large \
--pretrained_model roberta \
--model_size roberta-large \
--mode inference \
--features_dir /APOLLO/dataset/generator/ \
--examples_dir /APOLLO/dataset/generator/ \
--tags 2 \
--saved_model_path "the path of your selected checkpoint in the training" \
--dataset_type finqa

Consistency-based Reinforcement learning

In order to adopt reinforcement learning, you need to train a model in the above process. Then, you can run:

python -u -m torch.distributed.launch --nproc_per_node=2 --master_port=6899 Main.py\
--root_path "/APOLLO/" \
--model_save_name generator-roberta-large \
--pretrained_model roberta \
--model_size roberta-large \
--mode train \
--features_dir /APOLLO/dataset/generator/ \
--examples_dir /APOLLO/dataset/generator/ \
--tags 3 \
--saved_model_path "the path of your selected checkpoint in the supervised training" \
--dataset_type finqa --rl

The test of reinforcement learning is the same as the inference of supervised training.

Target Program Augmentation

In order to adopt target program augmentation, you need to cd in /TPA Then, you can run:

python TPA_Switch.py
python TPA_Add_Subtract.py
python TPA_Multiply_Divide.py
python TPA_Mul-Div.py

to create TPA dataset. Then, you need to edit and run data_process.py in /Generator to create features:

python data_process.py

In particular, you need to edit:

examples_dir = "/APOLLO/dataset/generator/"
features_dir = "/APOLLO/dataset/generator/"
if dataset_type == "finqa":
    train_file = root_path + "dataset/FinQA/train_retrieve_output.json"
else:
    train_file = root_path + "dataset/ConvFinQA/train_retrieve_output.json"
f = open(os.path.join(examples_dir, 'train_examples.pickle'), 'wb')
f = open(os.path.join(examples_dir, 'dev_examples.pickle'), 'wb')
f = open(os.path.join(features_dir, 'train_features.pickle'), 'wb')
f = open(os.path.join(features_dir, 'dev_features.pickle'), 'wb')
f = open(os.path.join(examples_dir, 'test_examples.pickle'), 'wb')
f = open(os.path.join(features_dir, 'test_features.pickle'), 'wb')

to

examples_dir = "/APOLLO/dataset/generator_tpa/"
features_dir = "/APOLLO/dataset/generator_tpa/"
if dataset_type == "finqa":
    train_file = root_path + "dataset/FinQA/train_TPA_Switch.json"  # or other TPA methods
else:
    train_file = root_path + "dataset/ConvFinQA/train_TPA_Switch.json"  # or other TPA methods
f = open(os.path.join(examples_dir, 'train_examples_switch.pickle'), 'wb')
f = open(os.path.join(examples_dir, 'dev_examples_switch.pickle'), 'wb')
f = open(os.path.join(features_dir, 'train_features_switch.pickle'), 'wb')
f = open(os.path.join(features_dir, 'dev_features_switch.pickle'), 'wb')
f = open(os.path.join(examples_dir, 'test_examples_switch.pickle'), 'wb')
f = open(os.path.join(features_dir, 'test_features_switch.pickle'), 'wb')

Then, you can run this command in /Generator:

python -u -m torch.distributed.launch --nproc_per_node=2 --master_port=5899 Main.py\
--root_path "/APOLLO/" \
--model_save_name generator-roberta-large \
--pretrained_model roberta \
--model_size roberta-large \
--mode train \
--features_dir /APOLLO/dataset/generator_tpa/ \
--examples_dir /APOLLO/dataset/generator_tpa/ \
--tags 4 \
--saved_model_path "the path of your selected checkpoint in the supervised training" \
--dataset_type finqa --tpa \
--tpa_methods switch

The test of TPA is the same as the inference of supervised training.

About

[COLING 2024] APOLLO: An Optimized Training Approach for Long-form Numerical Reasoning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages