Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Minor update: dissipation scaling between translation and rotation #392

Closed
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 29 additions & 23 deletions elastica/dissipation.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,8 @@ class AnalyticalLinearDamper(DamperBase):

\\pmb{\\omega}^{n+1} = \\pmb{\\omega}^n \\exp \\left( - \\frac{{\\nu}~m~dt } { \\mathbf{J}} \\right)

Updated based on `#354 <https://github.com/GazzolaLab/PyElastica/issues/354>`_.

Examples
--------
How to set analytical linear damper for rod or rigid body:
Expand Down Expand Up @@ -133,32 +135,36 @@ def __init__(
Time-step of simulation
"""
super().__init__(**kwargs)
# Compute the damping coefficient for translational velocity
nodal_mass = self._system.mass
self.translational_damping_coefficient = np.exp(-damping_constant * time_step)

# Compute the damping coefficient for exponential velocity
if self._system.ring_rod_flag:
element_mass = nodal_mass
else:
element_mass = 0.5 * (nodal_mass[1:] + nodal_mass[:-1])
element_mass[0] += 0.5 * nodal_mass[0]
element_mass[-1] += 0.5 * nodal_mass[-1]
self.rotational_damping_coefficient = np.exp(
-damping_constant
* time_step
* element_mass
* np.diagonal(self._system.inv_mass_second_moment_of_inertia).T
# Compute proper scaling for the exponential damping coefficient
self.damping_coefficient = np.exp(-damping_constant * time_step)

def dampen_rates(self, rod: RodType, time: np.float64) -> None:
np_dampen_rates(
rod.velocity_collection,
rod.omega_collection,
self.damping_coefficient,
rod.dilatation,
)

def dampen_rates(self, system: RodType, time: np.float64) -> None:
system.velocity_collection[:] = (
system.velocity_collection * self.translational_damping_coefficient
)

system.omega_collection[:] = system.omega_collection * np.power(
self.rotational_damping_coefficient, system.dilatation
)
@njit(cache=True)
def np_dampen_rates(
velocity: NDArray[np.float64],
omega: NDArray[np.float64],
damping_coefficient: np.float64,
dilatation: NDArray[np.float64]
) -> None:
"""
Dampen rates (velocity and omega) of a rod object in numba njit decorator
"""

number_of_nodes = velocity.shape[1]
for i in range(number_of_nodes):
velocity[:, i] = velocity[:, i] * damping_coefficient

number_of_elements = omega.shape[1]
for i in range(number_of_elements):
omega[:, i] = omega[:, i] * damping_coefficient ** dilatation[i]


class LaplaceDissipationFilter(DamperBase):
Expand Down
Loading