geoserver-restconfig
is a python library for manipulating a GeoServer instance via the GeoServer RESTConfig API.
Note: geoserver-restconfig is a fork of the old https://travis-ci.org/boundlessgeo/gsconfig
The project is distributed under a MIT License .
pip install geoserver-restconfig
For developers:
git clone git@github.com:geosolutions-it/geoserver-restconfig.git
cd geoserver-restconfig
python setup.py develop
There is a brief manual at http://geonode.org/geoserver-restconfig/ . If you have questions, please ask them on the GeoServer Users mailing list: http://geoserver.org/ .
Please use the Github project at http://github.com/geosolutions-it/geoserver-restconfig for any bug reports (and pull requests are welcome, but please include tests where possible.)
from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8080/geoserver/rest")
topp = cat.get_workspace("topp")
shapefile_plus_sidecars = shapefile_and_friends("states")
# shapefile_and_friends should look on the filesystem to find a shapefile
# and related files based on the base path passed in
#
# shapefile_plus_sidecars == {
# 'shp': 'states.shp',
# 'shx': 'states.shx',
# 'prj': 'states.prj',
# 'dbf': 'states.dbf'
# }
# 'data' is required (there may be a 'schema' alternative later, for creating empty featuretypes)
# 'workspace' is optional (GeoServer's default workspace is used by... default)
# 'name' is required
ft = cat.create_featurestore(name, workspace=topp, data=shapefile_plus_sidecars)
Since the entire purpose of this module is to interact with GeoServer, the test suite is mostly composed of integration tests.
These tests necessarily rely on a running copy of GeoServer, and expect that this GeoServer instance will be using the default data directory that is included with GeoServer.
This data is also included in the GeoServer source repository as /data/release/
.
In addition, it is expected that there will be a postgres database available at postgres:password@localhost:5432/db
.
You can test connecting to this database with the psql
command line client by running $ psql -d db -Upostgres -h localhost -p 5432
(you will be prompted interactively for the password.)
To override the assumed database connection parameters, the following environment variables are supported:
- DATABASE
- DBUSER
- DBPASS
If present, psycopg will be used to verify the database connection prior to running the tests.
If provided, the following environment variables will be used to reset the data directory:
- GEOSERVER_HOME
- Location of git repository to read the clean data from. If only this option is provided git clean will be used to reset the data.
- GEOSERVER_DATA_DIR
- Optional location of the data dir geoserver will be running with. If provided, rsync will be used to reset the data.
- GS_VERSION
- Optional environment variable allowing the catalog test cases to automatically download and start a vanilla GeoServer WAR form the web. Be sure that there are no running services on HTTP port 8080.
Here are the commands that I use to reset before running the geoserver-restconfig tests:
$ cd ~/geoserver/src/web/app/
$ PGUSER=postgres dropdb db
$ PGUSER=postgres createdb db -T template_postgis
$ git clean -dxff -- ../../../data/release/
$ git checkout -f
$ MAVEN_OPTS="-XX:PermSize=128M -Xmx1024M" \
GEOSERVER_DATA_DIR=../../../data/release \
mvn jetty:run
At this point, GeoServer will be running foregrounded, but it will take a few seconds to actually begin listening for http requests.
You can stop it with CTRL-C
(but don't do that until you've run the tests!)
You can run the geoserver-restconfig tests with the following command:
$ python setup.py test
Instead of restarting GeoServer after each run to reset the data, the following should allow re-running the tests:
$ git clean -dxff -- ../../../data/release/
$ curl -XPOST --user admin:geoserver http://localhost:8080/geoserver/rest/reload
Loading the GeoServer catalog
using geoserver-restconfig
is quite easy. The example below allows you to connect to GeoServer by specifying custom credentials.
from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8080/geoserver/rest/", "admin", "geoserver")
The code below allows you to filter which workspaces to return
cat.get_workspaces(names="geosolutions,topp")
You may also specify the workspaces as a proper list
cat.get_workspaces(names=["geosolutions", "topp"])
The code below allows you to filter which stores to return
cat.get_stores(names=["sf", "mosaic"], workspaces=["nurc", "topp", "sf"])
names
and workspaces
can either be a comma delimited string or a list.
This is true for the get_workspaces
, get_stores
, get_resources
, get_layergroups
and get_styles
.
The code below allows you to create a FeatureType from a Shapefile
geosolutions = cat.get_workspace("geosolutions")
import geoserver.util
shapefile_plus_sidecars = geoserver.util.shapefile_and_friends("C:/work/geoserver-restconfig/test/data/states")
# shapefile_and_friends should look on the filesystem to find a shapefile
# and related files based on the base path passed in
#
# shapefile_plus_sidecars == {
# 'shp': 'states.shp',
# 'shx': 'states.shx',
# 'prj': 'states.prj',
# 'dbf': 'states.dbf'
# }
# 'data' is required (there may be a 'schema' alternative later, for creating empty featuretypes)
# 'workspace' is optional (GeoServer's default workspace is used by... default)
# 'name' is required
ft = cat.create_featurestore("test", shapefile_plus_sidecars, geosolutions)
It is possible to create JDBC Virtual Layers too. The code below allow to create a new SQL View called my_jdbc_vt_test
defined by a custom sql
.
from geoserver.catalog import Catalog
from geoserver.support import JDBCVirtualTable, JDBCVirtualTableGeometry, JDBCVirtualTableParam
cat = Catalog('http://localhost:8080/geoserver/rest/', 'admin', '****')
store = cat.get_store('postgis-geoserver')
geom = JDBCVirtualTableGeometry('newgeom','LineString','4326')
ft_name = 'my_jdbc_vt_test'
epsg_code = 'EPSG:4326'
sql = 'select ST_MakeLine(wkb_geometry ORDER BY waypoint) As newgeom, assetid, runtime from waypoints group by assetid,runtime'
keyColumn = None
parameters = None
jdbc_vt = JDBCVirtualTable(ft_name, sql, 'false', geom, keyColumn, parameters)
ft = cat.publish_featuretype(ft_name, store, epsg_code, jdbc_virtual_table=jdbc_vt)
The next example shows how to create a PostGIS JNDI
datastore (connection_parameters come from another example.
Settings might be different depending on your needs):
cat = Catalog('http://localhost:8080/geoserver/rest/', 'admin', '****')
datastore_name = 'sample_jndi_store'
dstore = cat.get_store(name = datastore_name, workspace=metadata[WS])
# Let's check that the store doesn't already exist
if ds_store is None:
ws = 'my_workspace'
dstore = cat.create_datastore(workspace=ws, name = datastore_name)
connection_parameters= {
'type': 'PostGIS (JNDI)',
'schema': 'my_schema',
'Estimated extends': 'true',
'fetch size': '1000',
'encode functions': 'true',
'Expose primary keys': 'false',
'Support on the fly geometry simplification': 'true',
'Batch insert size': '1',
'preparedStatements': 'false',
'Support on the fly geometry simplification, preserving topology': 'true',
'jndiReferenceName': 'java:comp/env/jdbc/geodb',
'dbtype': 'postgis',
'namespace': 'my_workspace',
'Loose bbox': 'true'
}
dstore.connection_parameters.update(connection_parameters)
cat.save(dstore)
assert dstore.enabled
return dstore
This example shows how to easily update a layer
property. The same approach may be used with every catalog
resource
ne_shaded = cat.get_layer("ne_shaded")
ne_shaded.enabled=True
cat.save(ne_shaded)
cat.reload()
Deleting a store
from the catalog
requires to purge all the associated layers
first. This can be done by doing something like this:
st = cat.get_store("ne_shaded")
cat.delete(ne_shaded)
cat.reload()
cat.delete(st)
cat.reload()
Alternatively, you can delete a store
as well as all the underlying layers
in one shot, like this:
store = cat.get_store("ne_shaded")
cat.delete(store, purge=True, recurse=True)
There are some functionalities allowing to manage the ImageMosaic
coverages. It is possible to create new ImageMosaics, add granules to them,
and also read the coverages metadata, modify the mosaic Dimensions
and finally query the mosaic granules
and list their properties.
The geoserver-restconfig methods map the REST APIs for ImageMosaic
In order to create a new ImageMosaic layer, you can prepare a zip file containing the properties files for the mosaic configuration. Refer to the GeoTools ImageMosaic Plugin guide
in order to get details on the mosaic configuration. The package contains an already configured zip file with two granules.
You need to update or remove the datastore.properties
file before creating the mosaic otherwise you will get an exception.
from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8180/geoserver/rest")
cat.create_imagemosaic("NOAAWW3_NCOMultiGrid_WIND_test", "NOAAWW3_NCOMultiGrid_WIND_test.zip")
By defualt the cat.create_imagemosaic
tries to configure the layer too. If you want to create the store only, you can specify the following parameter
cat.create_imagemosaic("NOAAWW3_NCOMultiGrid_WIND_test", "NOAAWW3_NCOMultiGrid_WIND_test.zip", "none")
In order to retrieve from the catalog the ImageMosaic coverage store you can do this
store = cat.get_store("NOAAWW3_NCOMultiGrid_WIND_test")
It is possible to add more granules to the mosaic at runtime. With the following method you can add granules already present on the machine local path.
cat.add_granule("file://D:/Work/apache-tomcat-6.0.16/instances/data/data/MetOc/NOAAWW3/20131001/WIND/NOAAWW3_NCOMultiGrid__WIND_000_20131001T000000.tif", store.name, store.workspace.name)
The method below allows to send granules remotely via POST to the ImageMosaic. The granules will be uploaded and stored on the ImageMosaic index folder.
cat.add_granule("NOAAWW3_NCOMultiGrid__WIND_000_20131002T000000.zip", store.name, store.workspace.name)
To delete an ImageMosaic store, you can follow the standard approach, by deleting the layers first. ATTENTION: at this time you need to manually cleanup the data dir from the mosaic granules and, in case you used a DB datastore, you must also drop the mosaic tables.
layer = cat.get_layer("NOAAWW3_NCOMultiGrid_WIND_test")
cat.delete(layer)
cat.reload()
cat.delete(store)
cat.reload()
By default the ImageMosaic layer has not the coverage dimensions configured. It is possible using the coverage metadata to update and manage the coverage dimensions.
ATTENTION: notice that the presentation
parameters accepts only one among the following values {'LIST', 'DISCRETE_INTERVAL', 'CONTINUOUS_INTERVAL'}
from geoserver.support import DimensionInfo
timeInfo = DimensionInfo("time", "true", "LIST", None, "ISO8601", None)
coverage.metadata = ({'dirName':'NOAAWW3_NCOMultiGrid_WIND_test_NOAAWW3_NCOMultiGrid_WIND_test', 'time': timeInfo})
cat.save(coverage)
Once the ImageMosaic has been configured, it is possible to read the coverages along with their granule schema and granule info.
from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8180/geoserver/rest")
store = cat.get_store("NOAAWW3_NCOMultiGrid_WIND_test")
coverages = cat.mosaic_coverages(store)
schema = cat.mosaic_coverage_schema(coverages['coverages']['coverage'][0]['name'], store)
granules = cat.list_granules(coverages['coverages']['coverage'][0]['name'], store)
The granules details can be easily read by doing something like this:
granules['crs']['properties']['name']
granules['features']
granules['features'][0]['properties']['time']
granules['features'][0]['properties']['location']
granules['features'][0]['properties']['run']
When the mosaic grows up and starts having a huge set of granules, you may need to filter the granules query through a CQL filter on the coverage schema attributes.
granules = cat.list_granules(coverages['coverages']['coverage'][0]['name'], store, "time >= '2013-10-01T03:00:00.000Z'")
granules = cat.list_granules(coverages['coverages']['coverage'][0]['name'], store, "time >= '2013-10-01T03:00:00.000Z' AND run = 0")
granules = cat.list_granules(coverages['coverages']['coverage'][0]['name'], store, "location LIKE '%20131002T000000.tif'")
A layergroup can be setup by providing a list of layers and the related styles to the catalog. In the next example, a layergroup with 3 layers and their associated styles get created.
workspace = 'my_workspace'
layers_in_group = ['my_workspace:layer_1', 'my_workspace:layer_2', 'my_workspace:layer_3']
styles = ['my_workspace:style_1', 'my_workspace:style_2', 'my_workspace:style_3']
layergroup_name = 'test_layergroup'
layergroup = cat.create_layergroup(layergroup_name, layers_in_group, styles, workspace)
# Note that if no bounds are provided, GeoServer will automatically compute the layergroup bounding box
cat.save(layergroup)
A Layergroup can internally contain layergroups too. In the next example an additional layergroup containing
a layer_4
simple layer plus the previously created test_layegroup
will be created.
This time, layer attributes need to be specified.
workspace = 'my_workspace'
layers = []
layers.append({'name':'my_workspace:layer_4', 'attributes':{'type':'layer'}})
layers.append({'name':'my_workspace:test_layergroup', 'attributes':{'type':'layerGroup'}})
# Not specifying the style for the nested layergroup
styles = []
styles.append('my_workspace:style_4')
styles.append(None)
layergroup_name = 'outer_layergroup'
outer_layergroup = cat.create_layergroup(layergroup_name, layers, styles, workspace)
cat.save(outer_layergroup)