Skip to content

🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

License

Notifications You must be signed in to change notification settings

German-NLP-Group/transformers

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation



Build GitHub Documentation GitHub release Contributor Covenant DOI

State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow

🤗 Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation and more in over 100 languages. Its aim is to make cutting-edge NLP easier to use for everyone.

🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.

🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other.

Online demos

You can test most of our models directly on their pages from the model hub. We also offer private model hosting, versioning, & an inference API for public and private models.

Here are a few examples:

Write With Transformer, built by the Hugging Face team, is the official demo of this repo’s text generation capabilities.

If you are looking for custom support from the Hugging Face team

HuggingFace Expert Acceleration Program

Quick tour

To immediately use a model on a given text, we provide the pipeline API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts:

>>> from transformers import pipeline

# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]

The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.

Many NLP tasks have a pre-trained pipeline ready to go. For example, we can easily extract question answers given context:

>>> from transformers import pipeline

# Allocate a pipeline for question-answering
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
...     'question': 'What is the name of the repository ?',
...     'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}

In addition to the answer, the pretrained model used here returned its confidence score, along with the start position and end position of the answer in the tokenized sentence. You can learn more about the tasks supported by the pipeline API in this tutorial.

To download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:

>>> from transformers import AutoTokenizer, AutoModel

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)

And here is the equivalent code for TensorFlow:

>>> from transformers import AutoTokenizer, TFAutoModel

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)

The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.

The model itself is a regular Pytorch nn.Module or a TensorFlow tf.keras.Model (depending on your backend) which you can use normally. This tutorial explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our Trainer API to quickly fine-tune on a new dataset.

Why should I use transformers?

  1. Easy-to-use state-of-the-art models:

    • High performance on NLU and NLG tasks.
    • Low barrier to entry for educators and practitioners.
    • Few user-facing abstractions with just three classes to learn.
    • A unified API for using all our pretrained models.
  2. Lower compute costs, smaller carbon footprint:

    • Researchers can share trained models instead of always retraining.
    • Practitioners can reduce compute time and production costs.
    • Dozens of architectures with over 2,000 pretrained models, some in more than 100 languages.
  3. Choose the right framework for every part of a model's lifetime:

    • Train state-of-the-art models in 3 lines of code.
    • Move a single model between TF2.0/PyTorch frameworks at will.
    • Seamlessly pick the right framework for training, evaluation and production.
  4. Easily customize a model or an example to your needs:

    • We provide examples for each architecture to reproduce the results published by its original authors.
    • Model internals are exposed as consistently as possible.
    • Model files can be used independently of the library for quick experiments.

Why shouldn't I use transformers?

  • This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
  • The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library.
  • While we strive to present as many use cases as possible, the scripts in our examples folder are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.

Installation

With pip

This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+.

You should install 🤗 Transformers in a virtual environment. If you're unfamiliar with Python virtual environments, check out the user guide.

First, create a virtual environment with the version of Python you're going to use and activate it.

Then, you will need to install at least one of Flax, PyTorch or TensorFlow. Please refer to TensorFlow installation page, PyTorch installation page and/or Flax installation page regarding the specific install command for your platform.

When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:

pip install transformers

If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must install the library from source.

With conda

Since Transformers version v4.0.0, we now have a conda channel: huggingface.

🤗 Transformers can be installed using conda as follows:

conda install -c huggingface transformers

Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.

Model architectures

All the model checkpoints provided by 🤗 Transformers are seamlessly integrated from the huggingface.co model hub where they are uploaded directly by users and organizations.

Current number of checkpoints:

🤗 Transformers currently provides the following architectures (see here for a high-level summary of each them):

  1. ALBERT (from Google Research and the Toyota Technological Institute at Chicago) released with the paper ALBERT: A Lite BERT for Self-supervised Learning of Language Representations, by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
  2. BART (from Facebook) released with the paper BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
  3. BARThez (from École polytechnique) released with the paper BARThez: a Skilled Pretrained French Sequence-to-Sequence Model by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
  4. BEiT (from Microsoft) released with the paper BEiT: BERT Pre-Training of Image Transformers by Hangbo Bao, Li Dong, Furu Wei.
  5. BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
  6. BERT For Sequence Generation (from Google) released with the paper Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
  7. BigBird-RoBERTa (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
  8. BigBird-Pegasus (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
  9. Blenderbot (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
  10. BlenderbotSmall (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
  11. BORT (from Alexa) released with the paper Optimal Subarchitecture Extraction For BERT by Adrian de Wynter and Daniel J. Perry.
  12. ByT5 (from Google Research) released with the paper ByT5: Towards a token-free future with pre-trained byte-to-byte models by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
  13. CamemBERT (from Inria/Facebook/Sorbonne) released with the paper CamemBERT: a Tasty French Language Model by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
  14. CANINE (from Google Research) released with the paper CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
  15. CLIP (from OpenAI) released with the paper Learning Transferable Visual Models From Natural Language Supervision by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
  16. ConvBERT (from YituTech) released with the paper ConvBERT: Improving BERT with Span-based Dynamic Convolution by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
  17. CPM (from Tsinghua University) released with the paper CPM: A Large-scale Generative Chinese Pre-trained Language Model by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
  18. CTRL (from Salesforce) released with the paper CTRL: A Conditional Transformer Language Model for Controllable Generation by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
  19. DeBERTa (from Microsoft) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
  20. DeBERTa-v2 (from Microsoft) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
  21. DeiT (from Facebook) released with the paper Training data-efficient image transformers & distillation through attention by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
  22. DETR (from Facebook) released with the paper End-to-End Object Detection with Transformers by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
  23. DialoGPT (from Microsoft Research) released with the paper DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
  24. DistilBERT (from HuggingFace), released together with the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into DistilGPT2, RoBERTa into DistilRoBERTa, Multilingual BERT into DistilmBERT and a German version of DistilBERT.
  25. DPR (from Facebook) released with the paper Dense Passage Retrieval for Open-Domain Question Answering by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
  26. ELECTRA (from Google Research/Stanford University) released with the paper ELECTRA: Pre-training text encoders as discriminators rather than generators by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
  27. FlauBERT (from CNRS) released with the paper FlauBERT: Unsupervised Language Model Pre-training for French by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
  28. Funnel Transformer (from CMU/Google Brain) released with the paper Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
  29. GPT (from OpenAI) released with the paper Improving Language Understanding by Generative Pre-Training by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
  30. GPT-2 (from OpenAI) released with the paper Language Models are Unsupervised Multitask Learners by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
  31. GPT Neo (from EleutherAI) released in the repository EleutherAI/gpt-neo by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
  32. Hubert (from Facebook) released with the paper HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
  33. I-BERT (from Berkeley) released with the paper I-BERT: Integer-only BERT Quantization by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer
  34. LayoutLM (from Microsoft Research Asia) released with the paper LayoutLM: Pre-training of Text and Layout for Document Image Understanding by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
  35. LED (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
  36. Longformer (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
  37. LUKE (from Studio Ousia) released with the paper LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
  38. LXMERT (from UNC Chapel Hill) released with the paper LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering by Hao Tan and Mohit Bansal.
  39. M2M100 (from Facebook) released with the paper Beyond English-Centric Multilingual Machine Translation by by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
  40. MarianMT Machine translation models trained using OPUS data by Jörg Tiedemann. The Marian Framework is being developed by the Microsoft Translator Team.
  41. MBart (from Facebook) released with the paper Multilingual Denoising Pre-training for Neural Machine Translation by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
  42. MBart-50 (from Facebook) released with the paper Multilingual Translation with Extensible Multilingual Pretraining and Finetuning by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
  43. Megatron-BERT (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
  44. Megatron-GPT2 (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
  45. MPNet (from Microsoft Research) released with the paper MPNet: Masked and Permuted Pre-training for Language Understanding by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
  46. MT5 (from Google AI) released with the paper mT5: A massively multilingual pre-trained text-to-text transformer by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
  47. Pegasus (from Google) released with the paper PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization> by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
  48. ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
  49. Reformer (from Google Research) released with the paper Reformer: The Efficient Transformer by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
  50. RemBERT (from Google Research) released with the paper Rethinking embedding coupling in pre-trained language models by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
  51. RoBERTa (from Facebook), released together with the paper a Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
  52. RoFormer (from ZhuiyiTechnology), released together with the paper a RoFormer: Enhanced Transformer with Rotary Position Embedding by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
  53. SpeechToTextTransformer (from Facebook), released together with the paper fairseq S2T: Fast Speech-to-Text Modeling with fairseq by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
  54. SqueezeBert released with the paper SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
  55. T5 (from Google AI) released with the paper Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
  56. TAPAS (from Google AI) released with the paper TAPAS: Weakly Supervised Table Parsing via Pre-training by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
  57. Transformer-XL (from Google/CMU) released with the paper Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
  58. Vision Transformer (ViT) (from Google AI) released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
  59. VisualBERT (from UCLA NLP) released with the paper VisualBERT: A Simple and Performant Baseline for Vision and Language by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
  60. Wav2Vec2 (from Facebook AI) released with the paper wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
  61. XLM (from Facebook) released together with the paper Cross-lingual Language Model Pretraining by Guillaume Lample and Alexis Conneau.
  62. XLM-ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
  63. XLM-RoBERTa (from Facebook AI), released together with the paper Unsupervised Cross-lingual Representation Learning at Scale by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
  64. XLNet (from Google/CMU) released with the paper ​XLNet: Generalized Autoregressive Pretraining for Language Understanding by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
  65. XLSR-Wav2Vec2 (from Facebook AI) released with the paper Unsupervised Cross-Lingual Representation Learning For Speech Recognition by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
  66. Want to contribute a new model? We have added a detailed guide and templates to guide you in the process of adding a new model. You can find them in the templates folder of the repository. Be sure to check the contributing guidelines and contact the maintainers or open an issue to collect feedbacks before starting your PR.

To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to this table.

These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the documentation.

Learn more

Section Description
Documentation Full API documentation and tutorials
Task summary Tasks supported by 🤗 Transformers
Preprocessing tutorial Using the Tokenizer class to prepare data for the models
Training and fine-tuning Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the Trainer API
Quick tour: Fine-tuning/usage scripts Example scripts for fine-tuning models on a wide range of tasks
Model sharing and uploading Upload and share your fine-tuned models with the community
Migration Migrate to 🤗 Transformers from pytorch-transformers or pytorch-pretrained-bert

Citation

We now have a paper you can cite for the 🤗 Transformers library:

@inproceedings{wolf-etal-2020-transformers,
    title = "Transformers: State-of-the-Art Natural Language Processing",
    author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
    month = oct,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
    pages = "38--45"
}

About

🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.8%
  • Other 0.2%