Skip to content

Commit

Permalink
CodeCamp open-mmlab#153
Browse files Browse the repository at this point in the history
支持real-time webcam demo
  • Loading branch information
GhaSiKey committed Dec 23, 2022
1 parent 84d9f3b commit 3a02d2a
Showing 1 changed file with 224 additions and 0 deletions.
224 changes: 224 additions & 0 deletions demo/webcam_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,224 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import time
from collections import deque
from operator import itemgetter
from threading import Thread

import cv2
import numpy as np
import torch
from mmengine import Config, DictAction
from mmengine.dataset import Compose, pseudo_collate

from mmaction.apis import init_recognizer
from mmaction.utils import register_all_modules

FONTFACE = cv2.FONT_HERSHEY_COMPLEX_SMALL
FONTSCALE = 1
FONTCOLOR = (255, 255, 255) # BGR, white
MSGCOLOR = (128, 128, 128) # BGR, gray
THICKNESS = 1
LINETYPE = 1
EXCLUED_STEPS = [
'OpenCVInit', 'OpenCVDecode', 'DecordInit', 'DecordDecode', 'PyAVInit',
'PyAVDecode', 'RawFrameDecode'
]


def parse_args():
parser = argparse.ArgumentParser(description='MMAction2 webcam demo')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file/url')
parser.add_argument('label', help='label file')
parser.add_argument(
'--device', type=str, default='cuda:0', help='CPU/CUDA device option')
parser.add_argument(
'--camera-id', type=int, default=0, help='camera device id')
parser.add_argument(
'--threshold',
type=float,
default=0.01,
help='recognition score threshold')
parser.add_argument(
'--average-size',
type=int,
default=1,
help='number of latest clips to be averaged for prediction')
parser.add_argument(
'--drawing-fps',
type=int,
default=20,
help='Set upper bound FPS value of the output drawing')
parser.add_argument(
'--inference-fps',
type=int,
default=4,
help='Set upper bound FPS value of model inference')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
args = parser.parse_args()
assert args.drawing_fps >= 0 and args.inference_fps >= 0, \
'upper bound FPS value of drawing and inference should be set as ' \
'positive number, or zero for no limit'
return args


def show_results():
print('Press "Esc", "q" or "Q" to exit')

text_info = {}
cur_time = time.time()
while True:
msg = 'Waiting for action ...'
_, frame = camera.read()
frame_queue.append(np.array(frame[:, :, ::-1]))

if len(result_queue) != 0:
text_info = {}
results = result_queue.popleft()
for i, result in enumerate(results):
selected_label, score = result
if score < threshold:
break
location = (0, 40 + i * 20)
text = selected_label + ': ' + str(round(score*100, 2))
text_info[location] = text
cv2.putText(frame, text, location, FONTFACE, FONTSCALE,
FONTCOLOR, THICKNESS, LINETYPE)

elif len(text_info) != 0:
for location, text in text_info.items():
cv2.putText(frame, text, location, FONTFACE, FONTSCALE,
FONTCOLOR, THICKNESS, LINETYPE)

else:
cv2.putText(frame, msg, (0, 40), FONTFACE, FONTSCALE, MSGCOLOR,
THICKNESS, LINETYPE)

cv2.imshow('camera', frame)
ch = cv2.waitKey(1)

if ch == 27 or ch == ord('q') or ch == ord('Q'):
camera.release()
cv2.destroyAllWindows()
break

if drawing_fps > 0:
# add a limiter for actual drawing fps <= drawing_fps
sleep_time = 1 / drawing_fps - (time.time() - cur_time)
if sleep_time > 0:
time.sleep(sleep_time)
cur_time = time.time()


def inference():
score_cache = deque()
scores_sum = 0
cur_time = time.time()
while True:
cur_windows = []

while len(cur_windows) == 0:
if len(frame_queue) == sample_length:
cur_windows = list(np.array(frame_queue))
if data['img_shape'] is None:
data['img_shape'] = frame_queue.popleft().shape[:2]

cur_data = data.copy()
cur_data['imgs'] = cur_windows
cur_data = test_pipeline(cur_data)
cur_data = pseudo_collate([cur_data])

# Forward the model
with torch.no_grad():
result = model.test_step(cur_data)[0]
scores = result.pred_scores.item.tolist()
scores = np.array(scores)
score_cache.append(scores)
scores_sum += scores

if len(score_cache) == average_size:
scores_avg = scores_sum / average_size
num_selected_labels = min(len(label), 5)

score_tuples = tuple(zip(label, scores_avg))
score_sorted = sorted(score_tuples, key=itemgetter(1), reverse=True)
results = score_sorted[:num_selected_labels]

result_queue.append(results)
scores_sum -= score_cache.popleft()

if inference_fps > 0:
# add a limiter for actual inference fps <= inference_fps
sleep_time = 1 / inference_fps - (time.time() - cur_time)
if sleep_time > 0:
time.sleep(sleep_time)
cur_time = time.time()


def main():
global average_size, threshold, drawing_fps, inference_fps, device, model, camera, data, label, sample_length, \
test_pipeline, frame_queue, result_queue

# Register all modules in mmaction2 into the registries
register_all_modules()

args = parse_args()
average_size = args.average_size
threshold = args.threshold
drawing_fps = args.drawing_fps
inference_fps = args.inference_fps

device = torch.device(args.device)

cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)

# Build the recognizer from a config file and checkpoint file/url
model = init_recognizer(cfg, args.checkpoint, device=args.device)
camera = cv2.VideoCapture(args.camera_id)
data = dict(img_shape=None, modality='RGB', label=-1)

with open(args.label, 'r') as f:
label = [line.strip() for line in f]

# prepare test pipeline from non-camera pipeline
cfg = model.cfg
sample_length = 0
pipeline = cfg.test_pipeline
pipeline_ = pipeline.copy()
for step in pipeline:
if 'SampleFrames' in step['type']:
sample_length = step['clip_len'] * step['num_clips']
data['num_clips'] = step['num_clips']
data['clip_len'] = step['clip_len']
pipeline_.remove(step)
if step['type'] in EXCLUED_STEPS:
# remove step to decode frames
pipeline_.remove(step)
test_pipeline = Compose(pipeline_)

assert sample_length > 0

try:
frame_queue = deque(maxlen=sample_length)
result_queue = deque(maxlen=1)
pw = Thread(target=show_results, args=(), daemon=True)
pr = Thread(target=inference, args=(), daemon=True)
pw.start()
pr.start()
pw.join()
except KeyboardInterrupt:
pass


if __name__ == '__main__':
main()

0 comments on commit 3a02d2a

Please sign in to comment.