This repository contains the code for our NeurIPS 2024 paper: “Towards Flexible 3D Perception: Object-Centric Occupancy Completion Augments 3D Object Detection”.
24/12/15
We've released the codes for annotating and visualizing the object-centric occupancy.
Release codes for data generation.- Release codes for training and evaluation.
Please follow the SST setup instructions to configure the environment. For details on specific version requirements, refer to this GitHub issue.
Please install Mayavi for occupancy visualization.
pip install mayavi
pip install PyQt5
- Follow this instruction from MMDetection3D to download and prepare Waymo Open Dataset.
- Run the following command to extract raw waymo frame data.
python tools/create_data.py waymo_raw --root-path ./data/waymo/ --out-dir ./data/waymo/ --workers 64 --extra-tag waymo
- Following this instruction from CTRL to generate
train_gt.bin
for the training split. - Start annotation:
python tools/occ/occ_annotate.py --bin-path ./data/waymo/waymo_format/train_gt.bin --workers 32 --ngpus 8 --voxel-size 0.2 --data-root ./data/waymo/ --out-dir ./work_dirs/occ_annotate/waymo_occ_gt --split training
python tools/occ/occ_annotate.py --bin-path ./data/waymo/waymo_format/gt.bin --workers 32 --ngpus 8 --voxel-size 0.2 --data-root ./data/waymo/ --out-dir ./work_dirs/occ_annotate/waymo_occ_gt --split validation
After finishing the annotation, you can use the following command for visualization.
python tools/occ/visualizae_occ.py --occ-file {PATH_TO_NPZ}
A mayavi window will show up when running this command.
You can use the UI to hide/show components.
Consider citing our work if you find this project useful in your research.
@article{zheng2024towards,
title={Towards Flexible 3D Perception: Object-Centric Occupancy Completion Augments 3D Object Detection},
author={Zheng, Chaoda and Wang, Feng and Wang, Naiyan and Cui, Shuguang and Li, Zhen},
booktitle={NeurIPS},
year={2024}
}
- This repo is heavily built upon SST.