Skip to content

Commit

Permalink
moved theorems in earlier $a-interval
Browse files Browse the repository at this point in the history
  • Loading branch information
GinoGiotto authored Aug 23, 2023
1 parent e6b4f48 commit a17dbc1
Showing 1 changed file with 89 additions and 89 deletions.
178 changes: 89 additions & 89 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -18029,6 +18029,12 @@ Converse of the inference rule of (universal) generalization ~ ax-gen .
( wal sp syl ) ACEABACFDG $.
$}

$( Formula-building lemma for use with the Distinctor Reduction Theorem.
Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed
by NM, 27-Feb-2005.) $)
drsb2 $p |- ( A. x x = y -> ( [ x / z ] ph <-> [ y / z ] ph ) ) $=
( weq wsb wb sbequ sps ) BCEADBFADCFGBABCDHI $.

$( A double specialization (see ~ sp ). Another double specialization,
closer to PM*11.1, is ~ 2stdpc4 . (Contributed by BJ, 15-Sep-2018.) $)
2sp $p |- ( A. x A. y ph -> ph ) $=
Expand Down Expand Up @@ -18739,6 +18745,27 @@ Converse of the inference rule of (universal) generalization ~ ax-gen .
( wnf wsb wb sbft ax-mp ) ABEABCFAGDABCHI $.
$}

$( Substitution has no effect on a bound variable. (Contributed by NM,
1-Jul-2005.) $)
sbf2 $p |- ( [ y / x ] A. x ph <-> A. x ph ) $=
( wal nfa1 sbf ) ABDBCABEF $.

${
sbh.1 $e |- ( ph -> A. x ph ) $.
$( Substitution for a variable not free in a wff does not affect it.
(Contributed by NM, 14-May-1993.) $)
sbh $p |- ( [ y / x ] ph <-> ph ) $=
( nf5i sbf ) ABCABDEF $.
$}

${
nfs1f.1 $e |- F/ x ph $.
$( If ` x ` is not free in ` ph ` , it is not free in ` [ y / x ] ph ` .
(Contributed by Mario Carneiro, 11-Aug-2016.) $)
nfs1f $p |- F/ x [ y / x ] ph $=
( wsb sbf nfxfr ) ABCEABABCDFDG $.
$}

${
$d x y $.
$( Two equivalent ways of expressing the proper substitution of ` y ` for
Expand Down Expand Up @@ -19023,6 +19050,68 @@ Converse of the inference rule of (universal) generalization ~ ax-gen .
( wsb wi wn sbn pm2.21 sbimi sylbir ax-1 ja ) ACDEZBCDEABFZCDEZNGAGZCDEPACD
HQOCDABIJKBOCDBALJM $.

$( Implication inside and outside of a substitution are equivalent.
(Contributed by NM, 14-May-1993.) $)
sbim $p |- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) ) $=
( wi wsb sbi1 sbi2 impbii ) ABECDFACDFBCDFEABCDGABCDHI $.

${
sbrim.1 $e |- F/ x ph $.
$( Substitution in an implication with a variable not free in the
antecedent affects only the consequent. (Contributed by NM,
2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) $)
sbrim $p |- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) $=
( wi wsb sbim sbf imbi1i bitri ) ABFCDGACDGZBCDGZFAMFABCDHLAMACDEIJK $.
$}

${
sblim.1 $e |- F/ x ps $.
$( Substitution in an implication with a variable not free in the
consequent affects only the antecedent. (Contributed by NM,
14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.) $)
sblim $p |- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> ps ) ) $=
( wi wsb sbim sbf imbi2i bitri ) ABFCDGACDGZBCDGZFLBFABCDHMBLBCDEIJK $.
$}

$( Disjunction inside and outside of a substitution are equivalent.
(Contributed by NM, 29-Sep-2002.) $)
sbor $p |- ( [ y / x ] ( ph \/ ps ) <-> ( [ y / x ] ph \/ [ y / x ] ps ) ) $=
( wn wi wsb wo sbim sbn imbi1i bitri df-or sbbii 3bitr4i ) AEZBFZCDGZACDGZE
ZBCDGZFZABHZCDGSUAHRPCDGZUAFUBPBCDIUDTUAACDJKLUCQCDABMNSUAMO $.

$( Equivalence inside and outside of a substitution are equivalent.
(Contributed by NM, 14-May-1993.) $)
sbbi $p |- ( [ y / x ] ( ph <-> ps )
<-> ( [ y / x ] ph <-> [ y / x ] ps ) ) $=
( wb wsb wi wa dfbi2 sbbii sbim anbi12i sban 3bitr4i bitri ) ABEZCDFABGZBAG
ZHZCDFZACDFZBCDFZEZPSCDABIJQCDFZRCDFZHUAUBGZUBUAGZHTUCUDUFUEUGABCDKBACDKLQR
CDMUAUBINO $.

${
sblbis.1 $e |- ( [ y / x ] ph <-> ps ) $.
$( Introduce left biconditional inside of a substitution. (Contributed by
NM, 19-Aug-1993.) $)
sblbis $p |- ( [ y / x ] ( ch <-> ph ) <-> ( [ y / x ] ch <-> ps ) ) $=
( wb wsb sbbi bibi2i bitri ) CAGDEHCDEHZADEHZGLBGCADEIMBLFJK $.
$}

${
sbrbis.1 $e |- ( [ y / x ] ph <-> ps ) $.
$( Introduce right biconditional inside of a substitution. (Contributed by
NM, 18-Aug-1993.) $)
sbrbis $p |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> [ y / x ] ch ) ) $=
( wb wsb sbbi bibi1i bitri ) ACGDEHADEHZCDEHZGBMGACDEILBMFJK $.
$}

${
sbrbif.1 $e |- F/ x ch $.
sbrbif.2 $e |- ( [ y / x ] ph <-> ps ) $.
$( Introduce right biconditional inside of a substitution. (Contributed by
NM, 18-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) $)
sbrbif $p |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> ch ) ) $=
( wb wsb sbrbis sbf bibi2i bitri ) ACHDEIBCDEIZHBCHABCDEGJNCBCDEFKLM $.
$}

${
$d x y $.
$( Obsolete version of ~ sbn as of 8-Jul-2023. Substitution is not
Expand Down Expand Up @@ -20566,33 +20655,6 @@ requires either a disjoint variable condition ( ~ sb56 ) or a non-freeness
sbequOLD $p |- ( x = y -> ( [ x / z ] ph <-> [ y / z ] ph ) ) $=
( weq wsb sbequi wi equcoms impbid ) BCEADBFZADCFZABCDGLKHCBACBDGIJ $.

$( Formula-building lemma for use with the Distinctor Reduction Theorem.
Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed
by NM, 27-Feb-2005.) $)
drsb2 $p |- ( A. x x = y -> ( [ x / z ] ph <-> [ y / z ] ph ) ) $=
( weq wsb wb sbequ sps ) BCEADBFADCFGBABCDHI $.

${
sbh.1 $e |- ( ph -> A. x ph ) $.
$( Substitution for a variable not free in a wff does not affect it.
(Contributed by NM, 14-May-1993.) $)
sbh $p |- ( [ y / x ] ph <-> ph ) $=
( nf5i sbf ) ABCABDEF $.
$}

$( Substitution has no effect on a bound variable. (Contributed by NM,
1-Jul-2005.) $)
sbf2 $p |- ( [ y / x ] A. x ph <-> A. x ph ) $=
( wal nfa1 sbf ) ABDBCABEF $.

${
nfs1f.1 $e |- F/ x ph $.
$( If ` x ` is not free in ` ph ` , it is not free in ` [ y / x ] ph ` .
(Contributed by Mario Carneiro, 11-Aug-2016.) $)
nfs1f $p |- F/ x [ y / x ] ph $=
( wsb sbf nfxfr ) ABCEABABCDFDG $.
$}

${
sb6x.1 $e |- F/ x ph $.
$( Equivalence involving substitution for a variable not free.
Expand Down Expand Up @@ -21159,35 +21221,6 @@ proposition with a distinct variable (closed form of ~ nfsb4 ).
spsbimOLD $p |- ( A. x ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) $=
( wi wal wsb stdpc4 sbi1 syl ) ABEZCFKCDGACDGBCDGEKCDHABCDIJ $.

$( Implication inside and outside of a substitution are equivalent.
(Contributed by NM, 14-May-1993.) $)
sbim $p |- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) ) $=
( wi wsb sbi1 sbi2 impbii ) ABECDFACDFBCDFEABCDGABCDHI $.

${
sbrim.1 $e |- F/ x ph $.
$( Substitution in an implication with a variable not free in the
antecedent affects only the consequent. (Contributed by NM,
2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) $)
sbrim $p |- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) $=
( wi wsb sbim sbf imbi1i bitri ) ABFCDGACDGZBCDGZFAMFABCDHLAMACDEIJK $.
$}

${
sblim.1 $e |- F/ x ps $.
$( Substitution in an implication with a variable not free in the
consequent affects only the antecedent. (Contributed by NM,
14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.) $)
sblim $p |- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> ps ) ) $=
( wi wsb sbim sbf imbi2i bitri ) ABFCDGACDGZBCDGZFLBFABCDHMBLBCDEIJK $.
$}

$( Disjunction inside and outside of a substitution are equivalent.
(Contributed by NM, 29-Sep-2002.) $)
sbor $p |- ( [ y / x ] ( ph \/ ps ) <-> ( [ y / x ] ph \/ [ y / x ] ps ) ) $=
( wn wi wsb wo sbim sbn imbi1i bitri df-or sbbii 3bitr4i ) AEZBFZCDGZACDGZE
ZBCDGZFZABHZCDGSUAHRPCDGZUAFUBPBCDIUDTUAACDJKLUCQCDABMNSUAMO $.

$( Obsolete version of ~ sban as of 13-Aug-2023. Conjunction inside and
outside of a substitution are equivalent. (Contributed by NM,
14-May-1993.) (New usage is discouraged.)
Expand All @@ -21198,46 +21231,13 @@ proposition with a distinct variable (closed form of ~ nfsb4 ).
CDGZACDGZBCDGZEZFZEABHZCDGUAUBHTRCDGZUDRCDIUFUAQCDGZFUDAQCDJUGUCUABCDIKLMUE
SCDABNOUAUBNP $.

$( Equivalence inside and outside of a substitution are equivalent.
(Contributed by NM, 14-May-1993.) $)
sbbi $p |- ( [ y / x ] ( ph <-> ps )
<-> ( [ y / x ] ph <-> [ y / x ] ps ) ) $=
( wb wsb wi wa dfbi2 sbbii sbim anbi12i sban 3bitr4i bitri ) ABEZCDFABGZBAG
ZHZCDFZACDFZBCDFZEZPSCDABIJQCDFZRCDFZHUAUBGZUBUAGZHTUCUDUFUEUGABCDKBACDKLQR
CDMUAUBINO $.

$( Obsolete version of ~ spsbbi as of 6-Jul-2023. Specialization of
biconditional. (Contributed by NM, 2-Jun-1993.)
(Proof modification is discouraged.) (New usage is discouraged.) $)
spsbbiOLD $p |- ( A. x ( ph <-> ps )
-> ( [ y / x ] ph <-> [ y / x ] ps ) ) $=
( wb wal wsb stdpc4 sbbi sylib ) ABEZCFKCDGACDGBCDGEKCDHABCDIJ $.

${
sblbis.1 $e |- ( [ y / x ] ph <-> ps ) $.
$( Introduce left biconditional inside of a substitution. (Contributed by
NM, 19-Aug-1993.) $)
sblbis $p |- ( [ y / x ] ( ch <-> ph ) <-> ( [ y / x ] ch <-> ps ) ) $=
( wb wsb sbbi bibi2i bitri ) CAGDEHCDEHZADEHZGLBGCADEIMBLFJK $.
$}

${
sbrbis.1 $e |- ( [ y / x ] ph <-> ps ) $.
$( Introduce right biconditional inside of a substitution. (Contributed by
NM, 18-Aug-1993.) $)
sbrbis $p |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> [ y / x ] ch ) ) $=
( wb wsb sbbi bibi1i bitri ) ACGDEHADEHZCDEHZGBMGACDEILBMFJK $.
$}

${
sbrbif.1 $e |- F/ x ch $.
sbrbif.2 $e |- ( [ y / x ] ph <-> ps ) $.
$( Introduce right biconditional inside of a substitution. (Contributed by
NM, 18-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) $)
sbrbif $p |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> ch ) ) $=
( wb wsb sbrbis sbf bibi2i bitri ) ACHDEIBCDEIZHBCHABCDEGJNCBCDEFKLM $.
$}

$( Elimination of equality from antecedent after substitution. (Contributed
by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf
Lammen, 28-Jul-2018.) Revise ~ df-sb . (Revised by Wolf Lammen,
Expand Down

0 comments on commit a17dbc1

Please sign in to comment.