Skip to content

Commit

Permalink
Field extensions of degree 1 (metamath#3351)
Browse files Browse the repository at this point in the history
* Field extensions of degree 1
* Wording (iff)
  • Loading branch information
tirix authored Aug 9, 2023
1 parent 244e8cc commit aefacec
Showing 1 changed file with 157 additions and 0 deletions.
157 changes: 157 additions & 0 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -467688,6 +467688,51 @@ commutative monoid (=vectors) together with a semiring (=scalars) and a
WMBCDXOXQVPSVQWOYEEYBWTWHYBOWJYDWNWHYBCWIVRVSVTSWOEWTWAWBWC $.
$}

${
$d .0. a $. $d .x. a $. $d .x. v $. $d B a $. $d K a v $. $d M a $.
$d S a $. $d V a $. $d V v $. $d X a $. $d a ph $. $d ph v $.
lbslsp.v $e |- B = ( Base ` M ) $.
lbslsp.k $e |- K = ( Base ` S ) $.
lbslsp.s $e |- S = ( Scalar ` M ) $.
lbslsp.z $e |- .0. = ( 0g ` S ) $.
lbslsp.t $e |- .x. = ( .s ` M ) $.
lbslsp.m $e |- ( ph -> M e. LMod ) $.
lbslsp.1 $e |- ( ph -> V e. ( LBasis ` M ) ) $.
$( Any element of a left module ` M ` can be expressed as a linear
combination of the elements of a basis ` V ` of ` M ` . (Contributed by
Thierry Arnoux, 3-Aug-2023.) $)
lbslsp $p |- ( ph -> ( X e. B <-> E. a e. ( K ^m V ) ( a finSupp .0. /\ X =
( M gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) ) ) ) $=
( cfv wcel clspn cv cfsupp co cmpt cgsu wceq wa cmap wrex clbs eqid lbssp
wbr syl eleq2d wss lbsss ellspds bitr3d ) AIHGUASZSZTICTKUBZJUCUNIGBHBUBZ
VCSVDEUDUEUFUDUGUHKFHUIUDUJAVBCIAHGUKSZTZVBCUGRHVEVACGLVEULZVAULZUMUOUPAB
CDEFGVAHIJKVHLMNOPQAVFHCUQRHVECGLVGURUOUSUT $.
$}

${
$d .0. y $. $d B y $. $d W x y $. $d X x y $.
lindssn.1 $e |- B = ( Base ` W ) $.
lindssn.2 $e |- .0. = ( 0g ` W ) $.
$( Any singleton of a non-zero element is an independent set. (Contributed
by Thierry Arnoux, 5-Aug-2023.) $)
lindssn $p |- ( ( W e. LVec /\ X e. B /\ X =/= .0. )
-> { X } e. ( LIndS ` W ) ) $=
( vy vx clvec wcel wne csn cv cfv cdif wn wral wceq eqid c0 w3a wss cvsca
co clspn csca cbs clinds simp1 snssi 3ad2ant2 wa wo simpr eldifsni neneqd
c0g syl simpl3 sylanbrc adantr eldifad simpl2 lvecvs0or necon3abid mpbird
ioran nelsn difid a1i fveq2d clmod lveclmod lsp0 3syl neleqtrrd ralrimiva
eqtrd oveq2 sneq difeq2d eleq12d notbid ralbidv islinds2 biimpar syl12anc
wb ralsng ) BIJZCAJZCDKZUAZWJCLZAUBZGMZHMZBUCNZUDZWNWQLZOZBUENZNZJZPZGBUF
NZUGNZXFUQNZLZOZQZHWNQZWNBUHNJZWJWKWLUIZWKWJWOWLCAUJUKWMXLWPCWRUDZWNWNOZX
BNZJZPZGXJQZWMXSGXJWMWPXJJZULZXQDLZXOYBXODKZXOYCJPYBYDWPXHRZCDRZUMZPZYBYE
PYFPYHYBWPXHYBYAWPXHKWMYAUNZWPXGXHUOURUPYBCDWJWKWLYAUSUPYEYFVGUTYBYGXODYB
WPWRXFXGXHABCDEWRSZXFSZXGSZXHSZFWMWJYAXNVAYBWPXGXIYIVBWJWKWLYAVCVDVEVFXOD
VHURYBXQTXBNZYCYBXPTXBXPTRYBWNVIVJVKWMYNYCRZYAWMWJBVLJYOXNBVMXBBDFXBSZVNV
OVAVRVPVQWKWJXLXTWHWLXKXTHCAWQCRZXEXSGXJYQXDXRYQWSXOXCXQWQCWPWRVSYQXAXPXB
YQWTWNWNWQCVTWAVKWBWCWDWIUKVFWJXMWOXLULHAXFWRGWNXBXGBIXHEYJYPYKYLYMWEWFWG
$.
$}

${
lindflbs.b $e |- B = ( Base ` W ) $.
lindflbs.k $e |- K = ( Base ` F ) $.
Expand Down Expand Up @@ -468155,6 +468200,27 @@ commutative monoid (=vectors) together with a semiring (=scalars) and a
AVKVSVJABCDEFGHIJKLMNOPQRSTUAAHUMUBVCAIUMUCVCVDVEVFVJIVSVSUNVAVGVHVI $.
$}

${
rgmoddim.1 $e |- V = ( ringLMod ` F ) $.
$( The left vector space induced by a ring over itself has dimension 1.
(Contributed by Thierry Arnoux, 5-Aug-2023.) $)
rgmoddim $p |- ( F e. Field -> ( dim ` V ) = 1 ) $=
( cfield wcel cfv cur csn c1 wceq cdr cbs eqid crg 3syl syl3anc clspn syl
syl2anc cvv cldim chash clvec clbs cress csubrg ccrg isfld simplbi ressid
eqeltrd drngring subrgid crglmod csra rlmval eqtri sralvec clinds c0g wne
co wss sraring ringidcl sradrng drngunz lindssn crsp rspval fveq2i eqtr4i
ssidd fveq1i rsp1 syl5eqr eqidd sra1r sneqd fveq2d srabase 3eqtr3d islbs4
a1i sylanbrc dimval fvex hashsng ax-mp syl6eq ) ADEZBUAFZBGFZHZUBFZIWKBUC
EZWNBUDFZEZWLWOJWKAKEZAALFZUEVBZKEWTAUFFEZWPWKWSAUGEAUHUIZWKXAAKWTADWTMZU
JXCUKWKWSANEZXBXCAULZWTAXDUMOBWTAXABAUNFZWTAUOFFZCAUPUQZXAMURPZWKWNBUSFEZ
WNBQFZFZBLFZJWRWKWPWMXNEZWMBUTFZVAZXKXJWKBNEZXOWKXEWTWTVCZXRWKWSXEXCXFRWK
WTVMZBWTAWTXIXDVDSXNBWMXNMZWMMZVERWKBKEZXQWKWSXSYCXCXTBWTAWTXIXDVFSBWMXPX
PMZYBVGRXNBWMXPYAYDVHPWKAGFZHZXLFZWTXMXNWKWSXEYGWTJXCXFXEYGYFAVIFZFWTYFYH
XLYHXGQFXLAVJBXGQCVKVLVNWTAYEYHYHMXDYEMVOVPOWKYFWNXLWKYEWMWKBWTYEABXHJWKX
IWDZWKYEVQXTVRVSVTWKBWTAYIXTWAWBXNWQXLBWNYAWQMZXLMWCWEWNBWQYJWFSWMTEWOIJB
GWGWMTWHWIWJ $.
$}

${
$d I j k $. $d R j k $. $d V j $.
frlmdim.f $e |- F = ( R freeLMod I ) $.
Expand Down Expand Up @@ -469165,6 +469231,15 @@ commutative monoid (=vectors) together with a semiring (=scalars) and a
KTVKVFUREVEAULUMCDUNUOUP $.
$}

$( The subring algebra associated with a field extension is a vector space.
(Contributed by Thierry Arnoux, 3-Aug-2023.) $)
fldextsralvec $p |- ( E /FldExt F -> ( ( subringAlg ` E ) ` ( Base ` F ) )
e. LVec ) $=
( cfldext wbr cdr wcel cbs cfv cress co csubrg csra clvec ccrg cfield isfld
wa sylib simpld eqid fldextfld1 fldextress fldextfld2 eqeltrrd fldextsubrg
sralvec syl3anc ) ABCDZAEFZABGHZIJZEFUJAKHFUJALHHZMFUHUIANFZUHAOFUIUMQABUAA
PRSUHBUKEABUBUHBEFZBNFZUHBOFUNUOQABUCBPRSUDUJABUJTUEULUJAUKULTUKTUFUG $.

$( Closure of the field extension degree operation. (Contributed by Thierry
Arnoux, 29-Jul-2023.) $)
extdgcl $p |- ( E /FldExt F -> ( E [:] F ) e. NN0* ) $=
Expand Down Expand Up @@ -469208,6 +469283,13 @@ commutative monoid (=vectors) together with a semiring (=scalars) and a
wb ) ABCZAADEZAAAFGZPHZIZUJAJGCZUHUKAUJABUJKZLMUHANCZAOCUMUHUOAQCARSATUJAUN
UAUBUHUIULUMUCUGAAUDUEUF $.

$( A trivial field extension has degree one. (Contributed by Thierry Arnoux,
4-Aug-2023.) $)
extdgid $p |- ( E e. Field -> ( E [:] E ) = 1 ) $=
( cfield wcel cextdg co cbs cfv csra cldim c1 cfldext wbr fldextid extdgval
wceq syl crglmod rlmval eqcomi rgmoddim eqtrd ) ABCZAADEZAFGAHGGZIGZJUBAAKL
UCUEOAMAANPAUDAQGUDARSTUA $.

$( The multiplicativity formula for degrees of field extensions. Given ` E `
a field extension of ` F ` , itself a field extension of ` K ` , the
degree of the extension ` E /FldExt K ` is the product of the degrees of
Expand Down Expand Up @@ -469239,6 +469321,81 @@ commutative monoid (=vectors) together with a semiring (=scalars) and a
VCVFUNVDVGABLBCLUEUOURMQZUSMQZURNRUSNRVAVHKUMVIUNABOPUNVJUMBCOSUOURUMNURTEU
NABUFPUGUOUSUNNUSTEUMBCUFSUGURUSUIUJUKUL $.

${
$d E a x $. $d E b i v x $. $d E b u v x $. $d F a $. $d F b u v x $.
$d F i $.
$( If the degree of the extension ` E /FldExt F ` is ` 1 ` , then ` E ` and
` F ` are identical. (Contributed by Thierry Arnoux, 6-Aug-2023.) $)
extdg1id $p |- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> E = F ) $=
( vb vx vv vi co c1 wceq wa cbs cfv adantr cv wcel eqid syl cgsu ad2antrr
simpr vu va cfldext wbr cextdg cress fldextress wss csra c0 wne wex clvec
fldextsralvec lbsex n0 sylib csn chash cldim dimval sylan extdgval eqtr3d
clbs hash1snb biimpa syl2anc csca c0g cfsupp cvsca cmpt cmap cmulr simplr
eqidd csubrg fldextsubrg subrgss sravsca eqcomd ad5antr mpteq12dva oveq2d
wel oveqd cdr cfield fldextfld1 ccrg isfld fldextfld2 eqeltrrd drgextgsum
simplbi adantlr cvv cmnd crg drngring 3syl ringmnd ad4antr vex a1i elmapi
ad3antrrr wf adantl vsnid syl5eleqr ffvelrnd srasca eqtrd fveq2d eleqtrrd
sseldd lbsss eqsstr3d snss sylibr srabase ringcl syl3anc oveq12d ressmulr
gsumsnd eqtr4d 3eqtr3d cur cinvr cui syl2an2r eqeltrd wrex lbslsp r19.29a
wn exlimddv simp-5l simprbi crngcom 3eqtr2d simpld unitinvinv cdif simprd
invrvald sralmod0 clinds lbslinds sseldi eqneltrd nelne2 eldifsn sylanbrc
drnginvrn0 fveq2 eleq1d wral issubdrg rspcdva syl1111anc adantrl ringidcl
0nellinds eleqtrd clmod lveclmod mpbid anasss eleq2d bitrd ex ssrdv fvexd
ressid2 mpdan eqtr2d ) ABUCUDZABUEGZHIZJZBABKLZUFGZAUWABUWFIZUWCABUGZMUWD
AKLZUWEUHZUWFAIZUWDCNZUWEAUILLZVELZOZUWJCUWDUWNUJUKZUWOCULUWDUWMUMOZUWPUW
AUWQUWCABUNMZUWNUWMUWNPZUOQCUWNUPUQUWDUWOJZUWLDNZURZIZUWJDUWTUWOUWLUSLZHI
ZUXCDULZUWDUWOTZUWTUWMUTLZUXDHUWDUWQUWOUXHUXDIUWRUWLUWMUWNUWSVAVBUWDUXHHI
UWOUWDUWBUXHHUWAUWBUXHIUWCABVCMUWAUWCTVDMVDUWOUXEUXFUWLUWNDVFVGVHUWTUXCJZ
UAUWIUWEUXIUANZUWIOZUXJUWEOZUXIUXKJZENZUWMVILZVJLZVKUDZUXJUWMFUWLFNZUXNLZ
UXRUWMVLLZGZVMZRGZIZJZUXLEUXOKLZUWLVNGZUXMUXNUYGOZJZUXQUYDUXLUYIUXQJZUYDJ
UXJUYCUWEUYJUYDTUYIUYCUWEOUXQUYDUYIUYCUXAUXNLZUXABVOLZGZUWEUXIUYHUYCUYMIU
XKUXIUYHJZAUYBRGZAFUXBUXSUXRAVOLZGZVMZRGZUYCUYMUYNUYBUYRARUYNFUWLUYAUXBUY
QUWTUXCUYHVPZUYNFCWFZJUXTUYPUXSUXRUWAUXTUYPIUWCUWOUXCUYHVUAUWAUYPUXTUWAUW
MUWEAUWAUWMVQZUWAUWEAVRLZOZUWEUWIUHZUWEABUWEPZVSZUWEUWIAUWIPZVTQZWAWBWCWG
WDZWEUWTUYOUYCIZUXCUYHUWAUWOVUKUWCUWAUWOJUWMUWEFAUWFUWNUWLUYAUWMPUWAAWHOZ
UWOUWAAWIOZVULABWJZVUMVULAWKOZAWLZWPZQMUWAVUDUWOVUGMUWFPZUWAUWFWHOZUWOUWA
BUWFWHUWHUWABWIOZBWHOZABWMZVUTVVABWKOBWLWPZQWNMUWAUWOTWOWQZSUYNUYSUYKUXAU
YPGZUYMUYNUYQUWIVVEFAUXAWRVUHUWAAWSOZUWCUWOUXCUYHUWAAWTOZVVFUWAVUMVULVVGV
UNVUQAXAXBZAXCQXDUXAWROUYNDXEZXFUYNVVGUYKUWIOZUXAUWIOZVVEUWIOUXIVVGUYHUWA
VVGUWCUWOUXCVVHXHZMZUYNUWEUWIUYKUXIVUEUYHUWAVUEUWCUWOUXCVUIXHZMUYNUYKUYFU
WEUYNUWLUYFUXAUXNUYHUWLUYFUXNXIUXIUXNUYFUWLXGXJUYNUXAUXBUWLDXKUYTXLZXMUWA
UWEUYFIUWCUWOUXCUYHUWABUXOKUWABUWFUXOUWHUWAUWMUWEAVUBVUIXNXOXPXDXQZXRZUXI
VVKUYHUXIUXAUWMKLZUWIUXIUXBVVRUHUXAVVROUXIUXBUWLVVRUWTUXCTUXIUWOUWLVVRUHU
WDUWOUXCVPZUWLUWNVVRUWMVVRPZUWSXSQXTUXAVVRVVIYAYBUXIUWMUWEAUXIUWMVQVVNYCZ
XQMZUWIAUYPUYKUXAVUHUYPPZYDYEUYNUXRUXAIZJZUXSUYKUXRUXAUYPVWEUXRUXAUXNUYNV
WDTZXPVWFYFYHZUYNUYLUYPUYKUXAUWAUYLUYPIUWCUWOUXCUYHUWAUYLUWFVOLZUYPUWABUW
FVOUWHXPUWAVUDUYPVWHIVUGUWEAUWFUYPVUCVURVWCYGQYIXDWGYIYJWQUYIBWTOZUYKUWEO
ZUXAUWEOZUYMUWEOUWAVWIUWCUWOUXCUXKUYHUWAVUTVVAVWIVVBVVCBXAXBWCUXIUYHVWJUX
KVVPWQUXIVWKUXKUYHUXIUXQAYKLZUYCIZJZVWKEUYGUYNVWMVWKUXQUYNVWMJZUXAAYLLZLZ
VWPLZUXAUWEUYNVVGVWMUXAAYMLZOZVWRUXAIVVMVWOVWTVWQUYKIZVWOUWIAUYPVWSVWLVWP
UXAUYKVUHVWCVWLPZVWSPZVWPPZVWOUWAVVGUWAUWCUWOUXCUYHVWMUUAZVVHQUYNVVKVWMVW
BMZUYNVVJVWMVVQMZVWOUXAUYKUYPGZVVEVWLVWOVUOVVKVVJVXHVVEIVWOUWAVUMVUOVXEVU
NVUMVULVUOVUPUUBXBVXFVXGUWIAUYPUXAUYKVUHVWCUUCYEVWOVWLUYSVVEVWOVWLUYCUYOU
YSUYNVWMTUWTVUKUXCUYHVWMVVDXHVWOUYBUYRARUYNUYBUYRIVWMVUJMWEUUDUYNUYSVVEIV
WMVWGMXOZYIVWOVWLVVEVXIWBUUIZUUEAVWSVWPUXAVXCVXDUUFYNVWOVULVUDVUSVWQUWEAV
JLZURUUGZOZVWRUWEOZVWOUWAVUMVULVXEVUNVUQXBZVWOUWAVUDVXEVUGQVWOBUWFWHVWOUW
AUWGVXEUWHQVWOUWAVUTVVAVXEVVBVVCXBWNVWOVWQUWEOVWQVXKUKZVXMVWOVWQUYKUWEVWO
VWTVXAVXJUUHUYNVWJVWMVVPMYOVWOVULVVKUXAVXKUKZVXPVXOVXFUYNDCWFVWMVXKUWLOYS
ZVXQVVOUWTVXRUXCUYHVWMUWTVXKUWMVJLZUWLUWAVXKVXSIUWCUWOUWAUWMUWEAVXKVUBUWA
VXKVQVUIUUJSUWDUWQUWOUWLUWMUUKLZOVXSUWLOYSUWRUWTUWNVXTUWLUWNUWMUWSUULUXGU
UMUWLUWMVXSVXSPUVGYNUUNXHUXAVXKUWLUUOYNUWIAVWPUXAVXKVUHVXKPZVXDUURYEVWQUW
EVXKUUPUUQVULVUDJZVUSJZVXMJUBNZVWPLZUWEOZVXNUBVXLVWQVYDVWQIVYEVWRUWEVYDVW
QVWPUUSUUTVYCVYFUBVXLUVAZVXMVYBVUSVYGUBUWEAUWFVWPVXKVURVYAVXDUVBVGMVYCVXM
TUVCUVDWNUVEUXIVWLVVROVWNEUYGYPUXIVWLUWIVVRUXIVVGVWLUWIOVVLUWIAVWLVUHVXBU
VFQVWAUVHUXIFVVRUXOUXTUYFUWMUWLVWLUXPEVVTUYFPZUXOPZUXPPZUXTPZUXIUWQUWMUVI
OUWDUWQUWOUXCUWRSUWMUVJQZVVSYQUVKYRSUWEBUYLUYKUXAVUFUYLPYDYEYOSYOUVLUXIUX
KUYEEUYGYPZUXIUXKUXJVVROVYMUXIUWIVVRUXJVWAUVMUXIFVVRUXOUXTUYFUWMUWLUXJUXP
EVVTVYHVYIVYJVYKVYLVVSYQUVNVGYRUVOUVPYTYTUWDUWJJZUWJVUMUWEWROUWKUWDUWJTUW
AVUMUWCUWJVUNSVYNBKUVQUWEUWIUWFAWIWRVURVUHUVRYEUVSUVT $.
$}

$( The degree of the extension ` E /FldExt F ` is ` 1 ` iff ` E ` and ` F `
are the same structure. (Contributed by Thierry Arnoux, 6-Aug-2023.) $)
extdg1b $p |- ( E /FldExt F -> ( ( E [:] F ) = 1 <-> E = F ) ) $=
( cfldext cextdg co c1 wceq extdg1id wa oveq1 adantl cfield wcel fldextfld2
wbr adantr extdgid syl eqtrd impbida ) ABCOZABDEZFGABGZABHUAUCIZUBBBDEZFUCU
BUEGUAABBDJKUDBLMZUEFGUAUFUCABNPBQRST $.


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Expand Down

0 comments on commit aefacec

Please sign in to comment.