Skip to content

GongCheng1919/Quantization-caffe

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Quantization-caffe: This open-source package introduces an ultra-low loss quantization (ÎĽL2Q) method that provides DNN quantization schemes based on comprehensive quantitative data analysis together with a unique ternary quantization mechanism that use an additional quantizated scaler within limited bitwidth. Our method can deliver consistent accuracy improvement compared to the state-of-the-art quantization solutions with the same compression ratio.

Installation

  • Clone: clone our_branch to local:
    git clone https://github.com/GongCheng1919/Quantization-caffe.git
    cd Quantization-caffe
  • Merge: If you want to merge the latest Caffe into this branch, see the following commands:
    git remote add caffe https://github.com/BVLC/caffe.git
    git fetch caffe
    git merge -X theirs caffe/master
  • Installation: You can get detail steps about compilation and installation here.

Usage

Our Caffe branch support configure quantization. If you do not configure any quantization parameters in the model, the full-precision network model will be executed by default.

1. Configure quantization

Once the installation is complete, you can add the specified compression parameters (as follows) to each layer to indicate the compression operations the layer needs to perform.

  weights_compress:"ULQ" 
  weights_compress_param{
    maxbits:8
  }

The optional parameters of weights_compress are:

Ternary_Quantize:  Compressing the corresponding layer weights/biases into three values {-1,0,1} 
                   and an additional quantized scaler alpha, which is an integer value with the 
                   limited bit width and the bit width can be set by configuring the 
                   weights_compress_param.maxbits. More details can be found in our paper "T-DLA: 
                   An Open-source Deep Learning Accelerator for Ternarized DNN Models on Embedded 
                   FPGA" (reference 1).
                   
Clip:              Directly limit data range, for an input data, the output can be computed by this 
                   formula: output=(input*dst_range)/src_range). Here src_range=max(abs(input)) and   
                   usually dst_range=2^k. k can be set by configure the weights_compress_param.maxbits.
                   
ULQ:               Duilds the transformation of the original data to a data space with standard normal 
                   distribution, and then finds the optimal parameters to minimize the loss of the 
                   quantization of a target bitwidth.
                   The implementation of $\mu$L2Q quantization method compresses the corresponding 
                   layer weights/biases into an integer with the limited bit width and the bit width 
                   can be set by configuring the weights_compress_param.maxbits. More details can be found 
                   in our paper "$\mu$L2Q: An Ultra-Low Loss Quantization Method for DNN Compression"
                   (reference 2).

Attributes of weights_compress_param include:

mxbits:            Integer. It must be specified manually. Limiting the bit width of quantized data and requiring 
                   manual configuration, default is 8 (bit width).
   
fixedpos:          Integer. It can't be specified manually. It will be generated automatically in training.
                   For Ternary_Quantize: After quantizing decimal to integer by shift (output=round(input/2^fixedpos)), 
                                         the number of steps of decimal point movement is recorded in fixedpos.

alpha:             Real (Float). It can't be specified manually. It will be generated automatically in training.
                   For Ternary_Quantize: referring to alpha in paper 1 (reference 1).
                   For Clip: alpha=src_range/dst_range. Here src_range=max(abs(input)) and usually dst_range=2^k.   
                   k can be set by configure the weights_compress_param.maxbits.
                   For ULQ: referring to reciprocal of alpha in paper 2 (reference 2).

delta:             Real (Float). It can't be specified manually. It will be generated automatically in training.
                   For Ternary_Quantize: referring to the delta in paper 1 (reference 1).
                   For ULQ: referring to beta in a paper 2 (reference 2).

2. Obtaining the quantized weights and compression parameters of quantized model

Obtaining the weights of quantized model:

# using pycaffe to get the weigts of each layer
import caffe
import numpy as np
net = caffe.Net(your_deploy_prototxt, your_caffemodel_file, caffe.TEST)
for param_name in net.params.keys():
    #get the quantized weights and bias, if you don't quantize current layer, you will get None
    weights = net.params[param_name][0].quantize
    bias = net.params[param_name][1].quantize

Obtaining compression method and compression parameters:

import caffe
import numpy as np
net = caffe.Net(your_deploy_prototxt, your_caffemodel_file, caffe.TEST)
for layer in net.layers: 
    print(layer.type)
    #get weights compress
    for i in range(len(layer.weights_compress)):
        print '\t weights_compress[%d]:'%i,layer.weights_compress[i]
        param=layer.weights_compress_param[i]
        print '\t weights_compress_param[%d]:'%i,"alpha=%f, delta=%f, fixedpos=%d, maxbits=%d"%(param.alpha,param.delta,param.fixedpos,param.maxbits)
    #get activations compress
    for i in range(len(layer.activations_compress)):
        print '\t activations_compress[%d]:'%i,layer.activations_compress[i]
        param=layer.activations_compress_param[i]
        print '\t activations_compress_param[%d]:'%i,"alpha=%f, delta=%f, fixedpos=%d, maxbits=%d"%(param.alpha,param.delta,param.fixedpos,param.maxbits)

Note: for ease of calculation, all parameters of the quantized model have been scaled. If you want to get parameters of the integer (such as alpha), see the following steps

Examples

Demo

We use lenet5 as a demo. You can follow these steps or run python ./demo.py directly (using your python version which install the pycaffe) or going to quantization demo.

Prepare enviroment and data

Set up the Python environment: we'll use the pylab import for numpy and plot inline.

from pylab import *
%matplotlib inline
caffe_root = './'  # this file should be run from {caffe_root} (otherwise change this line)
import sys
sys.path.insert(0, caffe_root + 'python')
import caffe
import os
# Download data
!data/mnist/get_mnist.sh
# Prepare data
!examples/mnist/create_mnist.sh

Creating the net with quantization config

from caffe import layers as L, params as P
def lenet(lmdb, batch_size):
    # our version of LeNet: a series of linear and simple nonlinear transformations
    n = caffe.NetSpec()
    n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
                             transform_param=dict(scale=1./255), ntop=2)
    n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'),
                           weights_compress=["ULQ","ULQ"], #compress methods for kernel and bias
                           weights_compress_param=[{"maxbits":2},{"maxbits":2}], #compress param for kernel and bias
                           activations_compress="Clip",#compress method for activations
                           activations_compress_param={"maxbits":8})#compress param for activations
    n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'),
                           weights_compress=["ULQ","ULQ"],
                           weights_compress_param=[{"maxbits":2},{"maxbits":2}],
                           activations_compress="Clip",
                           activations_compress_param={"maxbits":8})
    n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.fc1 =   L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'),
                            weights_compress=["ULQ","ULQ"],
                           weights_compress_param=[{"maxbits":2},{"maxbits":2}],
                           activations_compress="Clip",
                           activations_compress_param={"maxbits":2})
    n.relu1 = L.ReLU(n.fc1, in_place=True)
    n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))
    n.loss =  L.SoftmaxWithLoss(n.score, n.label)
    return n.to_proto()
train_net_path=caffe_root+'examples/mnist/lenet_auto_quantization_train.prototxt'
test_net_path=caffe_root+'examples/mnist/lenet_auto_quantization_test.prototxt'
train_batchsize=64
train_epoch=floor(50000/train_batchsize)
test_batchsize=100
test_epoch=floor(10000/test_batchsize)
with open(train_net_path, 'w') as f:
    f.write(str(lenet(caffe_root+'examples/mnist/mnist_train_lmdb', train_batchsize)))
with open(test_net_path, 'w') as f:
    f.write(str(lenet(caffe_root+'examples/mnist/mnist_test_lmdb', test_batchsize)))

Define solver:

solver_config_path=caffe_root+'examples/mnist/lenet_auto_quantization_solver.prototxt'
from caffe.proto import caffe_pb2
s = caffe_pb2.SolverParameter()
s.random_seed = 0xCAFFE
s.train_net = train_net_path
s.test_net.append(test_net_path)
s.test_interval = 500  # Test after every 500 training iterations.
s.test_iter.append(100) # Test on 100 batches each time we test.
s.max_iter = 10000     # no. of times to update the net (training iterations)
# EDIT HERE to try different solvers
# solver types include "SGD", "Adam", and "Nesterov" among others.
s.type = "SGD"
# Set the initial learning rate for SGD.
s.base_lr = 0.01  # EDIT HERE to try different learning rates
# Set momentum to accelerate learning by
# taking weighted average of current and previous updates.
s.momentum = 0.9
# Set weight decay to regularize and prevent overfitting
s.weight_decay = 5e-4
# Set `lr_policy` to define how the learning rate changes during training.
# This is the same policy as our default LeNet.
s.lr_policy = 'inv'
s.gamma = 0.0001
s.power = 0.75
# EDIT HERE to try the fixed rate (and compare with adaptive solvers)
# `fixed` is the simplest policy that keeps the learning rate constant.
# s.lr_policy = 'fixed'
# Display the current training loss and accuracy every 1000 iterations.
s.display = 1000
# Snapshots are files used to store networks we've trained.
# We'll snapshot every 5K iterations -- twice during training.
s.snapshot = 5000
s.snapshot_prefix = "lenet_auto_quantization"
# Train on the GPU
s.solver_mode = caffe_pb2.SolverParameter.GPU
# Write the solver to a temporary file and return its filename.
with open(solver_config_path, 'w') as f:
    f.write(str(s))
### load the solver and create train and test nets
caffe.set_device(3)#set your own gpu id
caffe.set_mode_gpu()
solver = None  # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)
solver = caffe.get_solver(solver_config_path)

Training:

epoches = 20
# print train_epoch
# losses will also be stored in the log
train_loss = zeros(epoches)
test_acc = zeros(epoches)
# the main solver loop
for ep in range(epoches):
    solver.step(int(train_epoch))  # run one epoch
    # store the train loss
    train_loss[ep] = solver.net.blobs['loss'].data
    correct = 0
    for test_it in range(100):
        solver.test_nets[0].forward()
        correct += sum(solver.test_nets[0].blobs['score'].data.argmax(1)== solver.test_nets[0].blobs['label'].data)
    test_acc[ep] = correct / 1e4
    print("epoch %d: train loss=%.4f, test accuracy=%.4f"%(ep,train_loss[ep],test_acc[ep]))
#plot figure
_, ax1 = subplots()
ax2 = ax1.twinx()
ax1.plot(arange(epoches), train_loss)
ax2.plot(arange(epoches), test_acc, 'r')
ax1.set_xlabel('iteration')
ax1.set_ylabel('train loss')
ax2.set_ylabel('test accuracy')
ax2.set_title('Test Accuracy: {:.2f}'.format(test_acc[-1]))
epoch 0: train loss=0.0722, test accuracy=0.9736
epoch 1: train loss=0.0528, test accuracy=0.9797
epoch 2: train loss=0.0113, test accuracy=0.9833
epoch 3: train loss=0.0100, test accuracy=0.9868
epoch 4: train loss=0.0012, test accuracy=0.9882
epoch 5: train loss=0.0006, test accuracy=0.9865
epoch 6: train loss=0.0047, test accuracy=0.9894
epoch 7: train loss=0.0160, test accuracy=0.9896
epoch 8: train loss=0.0043, test accuracy=0.9886
epoch 9: train loss=0.0090, test accuracy=0.9905
epoch 10: train loss=0.0050, test accuracy=0.9887
epoch 11: train loss=0.0014, test accuracy=0.9894
epoch 12: train loss=0.0059, test accuracy=0.9896
epoch 13: train loss=0.0100, test accuracy=0.9911
epoch 14: train loss=0.0106, test accuracy=0.9902
epoch 15: train loss=0.0028, test accuracy=0.9904
epoch 16: train loss=0.0013, test accuracy=0.9889
epoch 17: train loss=0.0095, test accuracy=0.9904
epoch 18: train loss=0.0032, test accuracy=0.9903
epoch 19: train loss=0.0071, test accuracy=0.9908





Text(0.5,1,'Test Accuracy: 0.99')

training_curve

Get and restore weights and activations for further processing

#restore the weights to integer
def parse_data(data,compress_method,compress_param):
    if compress_method=="ULQ":
        alpha=compress_param.alpha
        beta=compress_param.delta
        return (data-beta)/alpha+0.5
    if compress_method=="Ternary_Quantize":
        alpha=compress_param.alpha
        fixedpos=compress_param.fixedpos
        print("restore alpha to integer: alpha=%f"%(alpha/2**fixedpos))
        return data/alpha
    if compress_method=="Clip":
        alpha=compress_param.alpha
        return data/alpha  
layer=solver.net.layers[1]
#for ULQ
data1=parse_data(layer.blobs[0].quantize,layer.weights_compress[0],layer.weights_compress_param[0])
#for Ternary_Quantization
data2=parse_data(layer.blobs[1].quantize,layer.weights_compress[1],layer.weights_compress_param[1])
#for Clip
data3=parse_data(solver.net.blobs['conv1'].data,layer.activations_compress[0],layer.activations_compress_param[0])
print(data1.reshape(-1)[:5])
print(data2.reshape(-1)[:5])
print(data3.reshape(-1)[:5])
imshow(data3[:,0].reshape(8, 8, 24, 24).transpose(0, 2, 1, 3).reshape(8*24, 8*24), cmap='gray')
[ 0.99999994  0.99999994  0.99999994  0.          0.99999994]
[  1.00000000e+00  -5.96046448e-08  -1.00000000e+00   2.00000000e+00
   2.00000000e+00]
[ 0.  0.  0.  0.  0.]

out_img

Please cite our works in your publications if it helps your research:

@article{yao2019tdla,
  title={T-DLA: An Open-source Deep Learning Accelerator for Ternarized DNN Models on Embedded FPGA},
  author={Yao Chen, Kai Zhang, Cheng Gong, Cong Hao, Xiaofan Zhang, Tao Li and Deming Chen},
  journal={IEEE Computer Society Annual Symposium on VLSI 2019 (ISVLSI)},
  year={2019}
}
@article{cheng2019uL2Q,
  title={$\mu$L2Q: An Ultra-Low Loss Quantization Method for DNN},
  author={Cheng, Gong and Ye, Lu and Tao, Li and Xiaofan, Zhang and Cong, Hao and Deming, Chen and Yao, Chen},
  journal={The 2019 International Joint Conference on Neural Networks (IJCNN)},
  year={2019}
}

About

Quantization Methods for DNN Compression

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 79.2%
  • Python 8.9%
  • Cuda 6.1%
  • CMake 2.7%
  • Jupyter Notebook 1.1%
  • MATLAB 0.8%
  • Other 1.2%