Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: graph rag with Vertex AI tutorial #1414

Open
wants to merge 5 commits into
base: main
Choose a base branch
from

Conversation

codingphun
Copy link

Description

Thank you for opening a Pull Request!
Before submitting your PR, there are a few things you can do to make sure it goes smoothly:

  • Follow the CONTRIBUTING Guide.
  • You are listed as the author in your notebook or README file.
    • Your account is listed in CODEOWNERS for the file(s).
  • Make your Pull Request title in the https://www.conventionalcommits.org/ specification.
  • Ensure the tests and linter pass (Run nox -s format from the repository root to format).
  • Appropriate docs were updated (if necessary)

Fixes #<issue_number_goes_here> 🦕

@codingphun codingphun requested a review from a team as a code owner November 15, 2024 18:27
Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

@koverholt koverholt self-requested a review November 15, 2024 18:32
Copy link
Member

@koverholt koverholt left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the contribution of this sample notebook! I left some comments throughout, but mainly this notebook needs to be formatted more closely to the notebook template in this repo.

Comment on lines 35 to 56
"<table align=\"left\">\n",
" <td style=\"text-align: center\">\n",
" <a href=\"https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/reasoning-engine/graph_rag_spanner.ipynb\">\n",
" <img src=\"https://cloud.google.com/ml-engine/images/colab-logo-32px.png\" alt=\"Google Colaboratory logo\"><br> Run in Colab\n",
" </a>\n",
" </td>\n",
" <td style=\"text-align: center\">\n",
" <a href=\"https://console.cloud.google.com/vertex-ai/colab/import/https:%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fgenerative-ai%2Fmain%2Fgemini%2Freasoning-engine%2Fgraph_rag_spanner.ipynb\">\n",
" <img width=\"32px\" src=\"https://lh3.googleusercontent.com/JmcxdQi-qOpctIvWKgPtrzZdJJK-J3sWE1RsfjZNwshCFgE_9fULcNpuXYTilIR2hjwN\" alt=\"Google Cloud Colab Enterprise logo\"><br> Run in Colab Enterprise\n",
" </a>\n",
" </td> \n",
" <td style=\"text-align: center\">\n",
" <a href=\"https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/reasoning-engine/graph_rag_spanner.ipynb\">\n",
" <img src=\"https://cloud.google.com/ml-engine/images/github-logo-32px.png\" alt=\"GitHub logo\"><br> View on GitHub\n",
" </a>\n",
" </td>\n",
" <td style=\"text-align: center\">\n",
" <a href=\"https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https://raw.githubusercontent.com/GoogleCloudPlatform/generative-ai/main/gemini/reasoning-engine/graph_rag_spanner.ipynb\">\n",
" <img src=\"https://lh3.googleusercontent.com/UiNooY4LUgW_oTvpsNhPpQzsstV5W8F7rYgxgGBD85cWJoLmrOzhVs_ksK_vgx40SHs7jCqkTkCk=e14-rj-sc0xffffff-h130-w32\" alt=\"Vertex AI logo\"><br> Open in Vertex AI Workbench\n",
" </a>\n",
" </td>\n",
"</table>"
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Update all of these links to point to the tutorial_graph_rag.ipynb file.

"id": "skeDTD9moBK5"
},
"source": [
"# GraphRAG on Google Cloud\n",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Use a more descriptive title, such as Building a GraphRAG Question-Answering System with LangChain on Vertex AI or similar.

"[LangChain on Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/reasoning-engine/overview)\n",
"is a managed service that helps you to build and deploy LangChain apps to a managed Reasoning Engine runtime.\n",
"\n",
"Instead of simply retrieving relevant text snippets based on keyword similarity, GraphRAG takes a more sophisticated, structured approach to Retrieval Augmented Generation. It involves creating a knowledge graph from the text, organizing it hierarchically, summarizing key concepts, and then using this structured information to enhance the accuracy and depth of responses.\n",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is there a canonical link you can use in the Google Cloud or LangChain docs for users looking for more information on the GraphRAG approach?

Comment on lines 99 to 109
"cell_type": "markdown",
"metadata": {},
"source": [
"## Before you begin\n",
"\n",
"1. In the Google Cloud console, on the project selector page, select or [create a Google Cloud project](https://cloud.google.com/resource-manager/docs/creating-managing-projects).\n",
"1. [Make sure that billing is enabled for your Google Cloud project](https://cloud.google.com/billing/docs/how-to/verify-billing-enabled#console).\n",
"\n",
"### Required roles\n",
"\n",
"To get the permissions that you need to complete the tutorial, ask your administrator to grant you the [Owner](https://cloud.google.com/iam/docs/understanding-roles#owner) (`roles/owner`) IAM role on your project. For more information about granting roles, see [Manage access](https://cloud.google.com/iam/docs/granting-changing-revoking-access).\n"
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please include all of the standard setup and config steps from the notebook template in this repo.

"id": "Wvrm1CcB2DVv"
},
"source": [
"![image.png]()"
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I've uploaded this image to our public GCS bucket associated with this repo, so you can reference it as a Markdown image or HTML image reference instead of base64 encoded:

https://storage.googleapis.com/github-repo/generative-ai/gemini/reasoning-engine/images/graphrag.png

"source": [
"### Create Knowledge Graph\n",
"\n",
"We will use Gemini and Langchain LLMGraphTransformer to parse the texts and generate a knowledge graph."
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Use in-line code formatting for syntax such as LLMGraphTransformer.

"source": [
"### Create Knowledge Graph\n",
"\n",
"We will use Gemini and Langchain LLMGraphTransformer to parse the texts and generate a knowledge graph."
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Be sure to stylize Langchain correctly as LangChain here and throughout.

"GCP_PROJECT_NUMBER=\"\"\n",
"REGION = \"us-central1\"\n",
"STAGING_BUCKET = \"gs://\" #must be at root bucket level and not a subfolder\n",
"MODEL_NAME=\"gemini-1.5-pro-002\"\n",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Use gemini-1.5-pro instead of a specific checkpoint to make this more future-proof for the Gemini 1.5 series.

Comment on lines 1563 to 1572
" \"google-cloud-aiplatform==1.67.0\",\n",
" \"google-cloud-resource-manager==1.12.5\",\n",
" \"google-cloud-spanner==3.48.0\",\n",
" \"langchain==0.3.0\",\n",
" \"langchain-community==0.3.0\",\n",
" \"langchain-core==0.3.2\",\n",
" \"langchain-experimental==0.3.0\",\n",
" \"langchain-google-vertexai==2.0.1\",\n",
" \"langchain-text-splitters==0.3.0\",\n",
" \"cloudpickle==3.1.0\"\n",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Have you tested (or can you test) this with all package versions set to latest available versions? For example, the current version of google-cloud-aiplatform is 1.72.0.

"source": [
"### Deploy to Vertex AI Reasoning Engine\n",
"\n",
"Great! The chain is working and return the answers from the orginal question. Now let's host this Langchain code on Vertex AI Reasoning Engine so we can call it as an API. First we will reorganize the code blocks above to make it work with the Vertex AI Reasoning Engine. Be sure to update the code with your Project ID and Region"
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We should have users define all constants in a cell near the top (like you have), then reuse that throughout to avoid having to re-define these in multiple places throughout the notebook.

"\n",
"## Objectives\n",
"\n",
"In this tutorial, you will see a complete walkthrough of building a question-answering system using the GraphRAG method. You'll learn how to create a knowledge graph from scratch, store it efficiently in Spanner Graph, enhance search accuracy with embedding vectors in Spanner Vector Database, and finally, deploy a functional FAQ system with Langchain and Vertex AI Reasoning Engine."
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
"In this tutorial, you will see a complete walkthrough of building a question-answering system using the GraphRAG method. You'll learn how to create a knowledge graph from scratch, store it efficiently in Spanner Graph, enhance search accuracy with embedding vectors in Spanner Vector Database, and finally, deploy a functional FAQ system with Langchain and Vertex AI Reasoning Engine."
"In this tutorial, you will see a complete walkthrough of building a question-answering system using the GraphRAG method. You'll learn how to create a knowledge graph from scratch, store it efficiently in Spanner Graph, enhance search accuracy with embedding vectors in Spanner Vector Database, and finally, deploy a functional FAQ system with LangChain and Vertex AI Reasoning Engine."

"\n",
"## Objectives\n",
"\n",
"In this tutorial, you will see a complete walkthrough of building a question-answering system using the GraphRAG method. You'll learn how to create a knowledge graph from scratch, store it efficiently in Spanner Graph, enhance search accuracy with embedding vectors in Spanner Vector Database, and finally, deploy a functional FAQ system with Langchain and Vertex AI Reasoning Engine."
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you add links to the docs for each of the features/products mentioned?

Comment on lines 272 to 280
"import os\n",
"from langchain_experimental.graph_transformers import LLMGraphTransformer\n",
"from langchain_google_vertexai import VertexAI\n",
"import networkx as nx\n",
"from langchain.chains import GraphQAChain\n",
"from langchain_core.documents import Document\n",
"from langchain_community.graphs.networkx_graph import NetworkxEntityGraph\n",
"import matplotlib.pyplot as plt"
]
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Put all imports here.

"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACaiElEQVR4nOzdd1hT59vA8W9CABmKguAGUXHj3nuiuHHVWWurdeKo2p8dVq2tbd0DrbZ1Va1b3Htr3Vtx4UBUHAgKyIac9w9eUiOoIIGA3J/r4mo5Oec5dyKQO8+4H5WiKApCCCGEyLbUxg5ACCGEEMYlyYAQQgiRzUkyIIQQQmRzkgwIIYQQ2ZwkA0IIIUQ2J8mAEEIIkc1JMiCEEEJkc5qUnKTVagkICCBnzpyoVKr0jkkIIYQQBqAoCmFhYRQsWBC1+u2f/1OUDAQEBFCkSBGDBSeEEEKIjPPgwQMKFy781sdTlAzkzJlT11iuXLkME5kQQggh0lVoaChFihTRvY+/TYqSgcShgVy5ckkyIIQQQmQx7xvilwmEQgghRDYnyYAQQgiRzUkyIIQQQmRzkgwIIYQQ2ZwkA0IIIUQ2J8mAEEIIkc1JMiCEEEJkc5IMCCGEENmcJANCCCFENifJgBBCCJHNSTIghBBCZHOSDAghhBDZnCQDQgghRDYnyYAQQgiRzUkyIIQQQmRzkgwIIYQQ2ZzG2AEIkVmFR8fhFxROTJwWM42aonZWWJnLr4wQ4uMjf9mEeI3v0zBWnvLn4M1n+AdHoLz2mApwtLWkcSkHetZ0xCVfTmOFKYQQBqVSFEV530mhoaHY2NgQEhJCrly5MiIuITLUg+AIvvW+wtHbzzFRq4jXvv3XIvHx+iXyMtnDlSK2lhkYqRBCpFxK379lzoDI9laf8afZzMMcvxsE8M5E4PXHj98NotnMw6w+45/uMQohRHqSYQKRrXkd9GXanlsfdG28ViFeqzB24xWev4pmaGMXA0cnhBAZQ3oGRKahUqmYMGFCht1v9Rn/D04E3jRtzy3WZJMegkaNGtGoUSNjhyGEMCBJBoTO0qVLUalUqFQqjh07luRxRVEoUqQIKpWKNm3aGCHC1El8Lv369Uvy2IPgCIaM/Jr7v7bh/q9tiI8ISfP9ftjiw4PgiCTHIyIimDBhAocOHUrzPYQQIj1IMiCSyJEjB//880+S44cPH+bhw4eYm5uny30jIyP5/vvvDdpmjhw52LBhAzExMXrHv/W+QqjPIVQaM4PdK06r8K33lSTHIyIimDhx4keTDOzZs4c9e/YYOwwhhAFJMiCSaNWqFevWrSMuLk7v+D///EPVqlXJnz+/we6l1WqJiooCEt64NRrDTmNp2bIloaGh7Ny5U3fM92kYew8dJe7lUyyKVzPYveK1CkdvP+f2szCDtZmZREQk9HqYmZlhZma4JEoIYXySDIgkunfvTlBQEHv37tUdi4mJYf369fTo0SPZa6ZNm0adOnWws7PDwsKCqlWrsn79+iTnqVQqhg4dysqVKylXrhzm5ubs2rVL99jrcwbu37/P4MGDKVWqFBYWFtjZ2dGlSxf8/PxS/FwKFSpEgwYN9Ho6Vp7yJ/LaIUzti2Ka1ynZ68JvHOPxkuH4T+vIg9k9eL51GnFhz/XOeb5tJv7TOxMX9pxnG37Cf3pnHszuwacDPImPjwfAz88Pe3t7ACZOnKgbunj9ed64cYPOnTtja2tLjhw5qFatGlu2bNG7V2xsLBMnTsTFxYUcOXJgZ2dHvXr19P6Nnjx5Qt++fSlcuDDm5uYUKFCA9u3bJ3m95s+fr3vtCxYsyJAhQ3j58qXeOY0aNaJ8+fKcO3eOBg0aYGlpybfffqt7TOYMCPFxkWRAJFG0aFFq167NqlWrdMd27txJSEgI3bp1S/aa2bNnU7lyZX788UcmT56MRqOhS5cubN++Pcm5Bw4cYOTIkXzyySfMnj2bokWLJtvmmTNnOH78ON26dWPOnDkMHDiQ/fv306hRI92n1JTo0aMHW7du5dWrVwn3v/aYVzeOYVW2YbLnv7q8j+ebfgW1mtwN+2Bd0Y2Imyd4suJ/aKNe6Z+saHm25gfUFjnJ0+RzcjiW58SmZfzxxx8A2Nvb8/vvvwPg4eHB8uXLWb58OR07dgTAx8eHWrVqcf36dcaOHcv06dOxsrKiQ4cOeHt7624zYcIEJk6cSOPGjfHy8uK7777D0dGR8+fP687p1KkT3t7e9O3bl/nz5zNs2DDCwsLw9/fXa2fIkCEULFiQ6dOn06lTJxYuXIibmxuxsbF6Ty0oKAh3d3cqVarErFmzaNy4cYpfcyFEFqOkQEhIiAIoISEhKTldZFFLlixRAOXMmTOKl5eXkjNnTiUiIkJRFEXp0qWL0rhxY0VRFMXJyUlp3bq13rWJ5yWKiYlRypcvrzRp0kTvOKCo1WrFx8cnyf0BZfz48W9tU1EU5cSJEwqg/P333+99PoAyZMgQJTg4WDEzM1OWL1+uhEXFKg5dxiugUgoNWqzY1O2uAErhYSsVp7HbFMcxmxS1ZW7F1N5JcRy9UXEau01xGrtNse88XgEUm7rddcesyjdNOFa/p+6Y09htilm+4krlKlV0cQQGBiZ5bomaNm2quLq6KlFRUbpjWq1WqVOnjuLi4qI7VrFixSSv+etevHihAMrUqVPfes6zZ88UMzMzxc3NTYmPj9cd9/LyUgBl8eLFumMNGzZUAGXBggVJ2mnYsKHSsGHDt95HCJF5pPT9W3oGRLK6du1KZGQk27ZtIywsjG3btr11iADAwsJC9/8vXrwgJCSE+vXr631yTdSwYUPKli373hhebzM2NpagoCBKlChB7ty5k233bfLkyUPLli1ZtWoV94PCCb92GPPCZdDYOCQ5N+aJL9qIl+Ss3FpvcqFliepo7AoTeedMkmtyVm6l97154bLcuXv3vXEFBwdz4MABunbtSlhYGM+fP+f58+cEBQXRokULfH19efToEQC5c+fGx8cHX1/fZNuysLDAzMyMQ4cO8eLFi2TP2bdvHzExMYwYMQK1+r9f/f79+5MrV64kvTjm5ub07dv3vc9DCJH1STIgkmVvb0+zZs34559/2LhxI/Hx8XTu3Pmt52/bto1atWqRI0cObG1tdd3jISFJl+w5OzunKIbIyEh++OEHihQpgrm5OXnz5sXe3p6XL18m2+679OjRg71793L/vj8Rt06+dYggLuQZABrbQkkeM7UtrHs8kUpjhomljd4xdQ5rQt8Yg0/O7du3URSFcePGYW9vr/c1fvx4AJ49S7jfjz/+yMuXLylZsiSurq6MGTOGy5cv69oyNzfnt99+Y+fOneTLl48GDRowZcoUnjx5ojvn/v37AJQqVUovDjMzM4oVK6Z7PFGhQoVkoqAQ2YRUIBRv1aNHD/r378+TJ09wd3cnd+7cyZ539OhR2rVrR4MGDZg/fz4FChTA1NSUJUuWJLtE8fVP/O/i6enJkiVLGDFiBLVr18bGxgaVSkW3bt3QarWpei7t2rXD3NycCaMGo8THYlm6XqqufyvVh+fTic9h9OjRtGjRItlzSpQoAUCDBg24c+cOmzdvZs+ePfz111/MnDmTBQsW6OoojBgxgrZt27Jp0yZ2797NuHHj+OWXXzhw4ACVK1dOdXwp/XcSQmR9kgyIt/Lw8GDAgAGcPHmSNWvWvPW8DRs2kCNHDnbv3q1Xg2DJkiVpuv/69evp06cP06dP1x2LiopKMvM9JSwsLOjQoQMrVqzAoljVJJ/mEyUOHcQFP4KiFfUeiwt+lOzQwvuoVKpkjxcrVgwAU1NTmjVr9t52bG1t6du3L3379uXVq1c0aNCACRMm6BVVKl68OKNGjWLUqFH4+vpSqVIlpk+fzooVK3BySlg5cfPmTd29IWGlyL1791IUgxDi4yTDBOKtrK2t+f3335kwYQJt27Z963kmJiaoVCrdcjpIWFK3adOmNN3fxMQE5Y1NNefOnat3n9QYPXo048ePp5T7Z289xyy/C2rL3IRd2IES99/s+sg7Z4kNeoBF8ervvY+Npane95aWCbsavpnEODg40KhRIxYuXMjjx4+TtBMYGKj7/6CgIL3HrK2tKVGiBNHR0UBCDYDEeg2JihcvTs6cOXXnNGvWDDMzM+bMmaP3ui5atIiQkBBat2793ucmhPg4Sc+AeKc+ffq895zWrVszY8YMWrZsSY8ePXj27Bnz5s2jRIkSeuPaqdWmTRuWL1+OjY0NZcuW5cSJE+zbtw87O7sPaq9ixYpUrFgRtviw/NT9ZHcnVJloyNPoM4J2zOLJP2OxKtOA+IiXhJ3dgolNPnJVb//Oe5ioVRSxs+L1XQosLCwoW7Ysa9asoWTJktja2lK+fHnKly/PvHnzqFevHq6urvTv359ixYrx9OlTTpw4wcOHD7l06RIAZcuWpVGjRlStWhVbW1vOnj3L+vXrGTp0KAC3bt2iadOmdO3albJly6LRaPD29ubp06e65aD29vZ88803TJw4kZYtW9KuXTtu3rzJ/PnzqV69Or169fqg11UIkfVJMiDSrEmTJixatIhff/2VESNG4OzszG+//Yafn1+akoHZs2djYmLCypUriYqKom7duuzbt++t4+sp1bOmI0tP+L31cesKzVCZmhN6cj0vDi1FbZoDy5K1yd3oM9Q5rN/ZdrxWoUJhGw6/cfyvv/7C09OTkSNHEhMTw/jx4ylfvjxly5bl7NmzTJw4kaVLlxIUFISDgwOVK1fmhx9+0F0/bNgwtmzZwp49e4iOjsbJyYmffvqJMWPGAFCkSBG6d+/O/v37Wb58ORqNhtKlS7N27Vo6deqka2fChAnY29vj5eXFyJEjsbW15csvv2Ty5MmYmpoihMieVMqb/bDJCA0NxcbGhpCQEHLlypURcQmRrnovOsXxu0HJ9g58KBO1ijrF7Fj+RU2DtSmEEGmR0vdvmTMgsqXJHq5o1MlP7PtQGrWKyR6uBm1TiDeFR8fhExDCBf8X+ASEEB4d9/6LhHgPGSYQ2VIRW0smtivH2I1Jdxn8UD+2K0cRW0uDtSdEIt+nYaw85c/Bm8/wD47g9f4sFeBoa0njUg70rOmIS76cxgpTZGEyTCCyNa+DvkzbcyvN7YxxK8WQxiUMEJEQ/3kQHMG33lc4evs5JmrVO4e1Eh+vXyIvkz1cJTEVgAwTCJEiQxu78GtHV8w1akxSOWxgolZhrlHzW0dXSQSEwa0+40+zmYc5fjdhWen75rckPn78bhDNZh5m9Rn/d54vxOskGRDZXrfqjuwb2ZA6xRKWLL4vKUh8vE4xO/aNbMgn1R3TPUaRvXgd9GXsxitEx2lTPck1XqsQHadl7MYreB1Mfi8LId4kyYAQJMwhWP5FTfaOaEDvmk442VnyZkqgAgrbmNO9WiEi1n9D6Sf7pCs2Czl06BCfffaZscN4r9Vn/A0ydBX38imeTUrSa/h37z13woQJSSplFi1aVO/1OnToECqVikOHDumOffbZZ2/dglxkLTKBUIjXuOTLyYR25ZhAOcKj4/ALCicmTouZRk0Baw15c+ckrkYNAm9f4fvvrxAUFMSUKVPQaORXKas7ffo0S5cu5dSpU1y+fJm4uLgkFTCTc+zYMerXrw8kVI3Mmzev7rEJEyYwceLEJNeYm5snqRgJCXMExm/xAUAbG0X45X1E+J4iNtAPbWwUmtwFyFmpJdaVWqBSm6Toee32ecqD4AhJXMU7yV8wId7CylxDuYL/7WFw/vx5FEXh1KlTumOzZs3i4sWLrFu37oMrI4qMERsbS2xsLFqtVm8L50Q7duzgr7/+okKFChQrVoxbt97/6Vyr1eLp6YmVlRXh4eFvPe/333/H2vq/glUmJsm/kX/rfYW4/x8WiHv5hOC9C8lRtCI5a3RAbWZJ5L3zBO+ZT3TADfK2+eq98QFoFYVvva+8s/7F999/z9ixY1PU3uv+/PPPVG8aJjInGSYQIoUuXryY5JiiKBw5coTKlStz5YrhlikKw1m8eDFOTk64ubnxzz//YGZmhqurK1u3btU7b9CgQYSEhHD27FmaN2+eorb/+OMPHjx4oLdZVHI6d+5Mr169dF/du3dPco7v0zCO3n6umyNgYpWHAl94ka/bT9jU7ETOyu44dPwOK9dmhF89QOyLgBTFqFXg6O3n3H4W9tZzNBoNOXLkSFF7rzM1NdXbnExkXZIMCJFCFy9eTHY4ID4+ngcPHlCnTh0iIiKMEJl4m0OHDvHFF19QpkwZJk6cSNOmTVmwYAFVqlThzp07eufmy5cvVds2BwcH8/333/Pjjz++dXvvRIqiEBoa+s5hh5Wn/PUmr5pY2mBm75TkPMuStQGIff4gxbGGnd1EtfKlsLCwoGHDhly9elXv8eTmDKREcnMGwsPDGTVqFEWKFMHc3JxSpUoxbdq0JM9dpVIxdOhQNm3aRPny5TE3N6dcuXLs2rUr1XGItJNkQIgUOnv2LHFxyVd7s7e356efftLtUCgyh+3bt2Ntbc3mzZtp0KABhQsXpl+/fixbtowRI0akqe1x48aRP39+BgwY8N5zixUrho2NDTlz5qRXr148ffo0yTkHbz5L0cqB+PAXAJhYpqzmS/jVA4Sc2Ypt9bZ88803XL16lSZNmiQbQ1opikK7du2YOXMmLVu2ZMaMGZQqVYoxY8bw1VdJhzWOHTvG4MGD6datG1OmTCEqKopOnTol2aVTpD+ZMyBECmi1Wt0Ogm8yNzfn5s2b5MmTJ4OjEu9jYmJCfHy8bhtnQ7l8+TILFy5kx44dbx3/B8iTJw9Dhw6ldu3amJubc/ToUebNm8fp06c5e/asrgjMq+g4/IPf36ukxMcSdnYLGpt8mBUomaJY4148puCAhSg58zLqfy1o2bIlNWvW5LfffmPGjBkpe8IptGXLFg4cOMBPP/3Ed98lrGIYMmQIXbp0Yfbs2QwdOpTixYvrzr9+/TrXrl3THWvcuDEVK1Zk1apVuh05RcaQngEhUiA4OFg3BFCwYEEAvv32W27dukVcXBwrVqwwZnjiLXr27El8fDy1a9fm77//5sWLF0RGRqa53WHDhuHu7o6bm9s7zxs+fDhz586lR48edOrUiVmzZrFs2TJ8fX2ZP3++7rz7QeGkpJpA8J4FxD73x9ZtYIpXE1iUrIUmZ14UwC8onBo1alCzZk127NiRoutTIzE5GjZsmN7xUaNGoSgKO3fu1DverFkzveSgQoUK5MqVi7t37xo8NvFukgwIkQJ58+bl2LFjBAQE4OPjg4mJCY6Ojri4uNC1a1dmzJjx1iEEYTyurq6cPHmSUqVKsX79erZs2ULu3Lnp2rUrDx6kfMz9dWvWrOH48eNMnz79g67v0aMH+fPnZ9++fbpjMXHvn5EfcmoDry7txqZ+LyyKV0/x/UzzFExyn5IlS+Ln55fyoFPo/v37FCxYkJw59fdHKFOmjO7x1zk6Ji3YlSdPHl68eGHw2MS7STIgRArVrVuXAgUKkDt3bmrXrq37lDNmzBj8/PzYsGGDkSMUyalcuTIbN25ky5YttGzZkokTJ7Jz507c3d0/KIEbM2YMXbp0wczMDD8/P/z8/Hj58iUADx48ICDg/bP8ixQpQnBwsO57M827/xS/uryPlweXYl3Zndx1u6U65pTeJ6O9bYglJfUdhGFlrp8MIbIId3d39u/fT0xMDJUrV6Zp06ZMnTpV/ohlcvny5WPs2LFMnDgRHx8fbty4keo2Hjx4wD///IOzs7Pua/bs2QBUqVKFVq1avfN6RVHw8/PD3t5ed6yonVWSipeJIm6dJGjnHCxL1cbWbVCq401cgqj6//sA3Lp1K10qBzo5OREQEEBYmP4yxsTX2ckp6eoIkTlIMiDEB3B3d+fVq1f8+++/QMKnxXPnznH48GEjRyZe97bu5tjYWIBULSVM5O3tneTrk08+AeDvv/9m5syZunMDAwOTXP/7778TGBhIy5YtdceszDXkjXtOXMgzvXOj/K/yfMsUzIuUJ2/bMahUqf+THXnrJHFhz3G0s8TKXMPp06c5deoU7u7uqW7rfVq1akV8fDxeXl56x2fOnIlKpUqXewrDkNUEQnyASpUqkT9/fnbu3Enjxo1xc3OjQoUKTJ06lUaNGhk7PPH/Ro0aRVBQEB07duTly5c8fPiQH3/8kSlTplCrVi2KFSumO/f+/fssX74cSFhGCvDTTz8BCZ9oe/fuDUCHDh2S3CexIJW7u7teOWInJyc++eQTXF1dyZEjB8eOHWP16tVUqlQpyZLEs9M+I4ejK/l6/AJAXMgznm2YBKiwKl2X8BvH9M43cyiKmYPze18DTZ4CPF3xP8p06MmkSceYNWsWdnZ2fP311++9NrXatm1L48aN+e677/Dz86NixYrs2bOHzZs3M2LECL3JgiJzkWRAiA+gUqlo0aIFO3fuZMqUKahUKkaPHs2nn36Kj48P5cqVM3aIAhg8eDDz589n0qRJPHz4kNjYWG7evEm3bt34+eef9Qrt3Lt3j3Hjxuldn/h9w4YNdclAavTs2ZPjx4+zYcMGoqKicHJy4uuvv+a7775LtibF68NMcS+foEQnlDgO3vN7knNt6nZPUTJgVb4JKpUKn31rObo6kBo1auDl5UWBAgVS/XzeR61Ws2XLFn744QfWrFnDkiVLKFq0KFOnTmXUqFEGv58wHJWSgkHO0NBQbGxsCAkJ0a2LFSK7W7NmDd26dcPf358iRYoQGxuLs7MzzZs3Z8mSJcYOT7zh0KFDLF26lKVLlxo7lLfqvegUx+8GpXrb4ncxUauoU8zunXsTiI9XSt+/Zc6AEB+oefPmqNVqXflUU1NTRowYwcqVK3n06JGRoxNZ0WQPVzTq1JcFfheNWsVkD1eDtik+PpIMCPGBbG1tqVWrll4hlS+//BILCwvmzJljxMhEcooWLZrseH9mUsTWkontDDvE9GO7crJ9sXgvSQaESAN3d3f27dtHTEwMALly5WLAgAEsWLCA0NBQI0cnXpcVkgGAT6oVoWMJU4O0NcatFJ9UT1rYR4g3STIgRBq4u7sTFhbG8ePHdceGDx9OZGQkf/31lxEjE1lNWFgY8+bNo0CBAszs14I2DqGYa9R6OxmmhIlahblGzW8dXRnSuEQ6RSs+NpIMCJEGlStXxsHBQW+ooFChQvTo0YNZs2bp1rML8TY3b97E09OT/Pnz4+npqdtNcFyPJuwb2ZA6xewA3psUJD5ep5gd+0Y2lB4BkSqymkCINOrTpw8XLlzg8uXLumNXr17F1dWV5cuX06tXLyNGJzKz77//np9//hmNRqNXGrl48eLcvn1b973v0zBWnvLn4K1n+AdF6G1qpAIc7SxpXNKBXrUcKeGgvy+AyN5S+v4tdQaESCN3d3f+/vtvHj16RKFChQAoX7487u7uTJ06lZ49e+qtZxciUalSpVCpVMTHx+uOaTQamjdvrneeS76cTGhXjgmUIzw6Dr+gcGLitJhp1BS1s8LKXP6Ui7SRYQIh0ujNJYaJxowZw+XLl9m7d6+RIhOZXe/evfH29tZLFuPi4mjYsOFbr7Ey11CuoA2VHfNQrqCNJALCICQZECKN7OzsqFGjRpK92hs1akSVKlWYOnWqkSITmZ2iKGzbtg2VSoWtra0uKXhXMiBEepBkQAgDcHd3Z+/evXoTBlUqFWPGjGHfvn1cuHDBiNGJzGr69On89ddf/Pnnn1y9epUKFSrg6uqaLqWChXgXSQaEMAB3d3dCQ0M5ceKE3vHOnTtTtGhRpk+fbqTIRGbl7e3N119/zTfffEPfvn0pUKAA586dS/IzJERGkGRACAOoWrUq9vb2SYYKNBoNI0eOZPXq1fj7+xspOpHZnDt3jp49e9K5c2fdzogAJiYmWFlZGTEykV1JMiCEAajVat0uhm/6/PPPyZUrF7Nmzcr4wESm8+DBA9q2bUuFChVYtmwZarX8GRbGJz+FQhiIu7s7ly5dIiAgQO+4tbU1gwcP5s8//+Tly5fGCU5kCmFhYbRp0wYzMzM2b96MhYWFsUMSApBkQAiDcXNzQ6VSJVliCODp6UlMTAwLFiwwQmQiM4iLi6Nbt27cu3ePbdu2kS9fPmOHJISOJANCGEjevHmTXWIIkC9fPj799FNmz55NdHS0EaITxjZq1Ch2797NunXrKF++vLHDEUKPJANCGFDiEsPXS8smGjVqFE+ePGHlypVGiEwYk5eXF3PmzGHu3Lm0aNHC2OEIkYQkA0IYkLu7OyEhIZw8eTLJY6VLl6Zdu3ZMmzYNrVZrhOiEMezYsYPhw4czcuRIBg0aZOxwhEiWJANCGFC1atXImzdvskMFkFCi+Pr16299XHxcLl++zCeffELr1q2lEqXI1GTXQiEMrGfPnly/fp3z588neUxRFOrUqYO5uTmHDh3K+OBEhnn8+DE1a9bEzs6Oo0ePYm1tbeyQRDaU0vdv6RkQwsDc3d25cOECT548SfJYYoniw4cPc+bMGSNEJzJCREQE7dq1Iz4+nq1bt0oiIDI9SQaEMLAWLVq8dYkhQPv27SlRooR0G3+ktFotvXv35tq1a2zdupXChQsbOyQh3kuSASEMzN7enmrVqr11XoCJiQmjRo1iw4YN3L17N4OjE+nt22+/xdvbm1WrVlGlShVjhyNEikgyIEQ6cHd3Z8+ePckuMQTo06cPtra2zJgxI4MjE+npr7/+4rfffmP69Om0a9fO2OEIkWKSDAiRDtzd3Xn58iWnTp1K9nELCwuGDh3K4sWLCQoKyuDoRHrYv38/gwYNYuDAgYwYMcLY4QiRKpIMCJEOqlevjp2d3TuXEA4ZMgSA+fPnZ1RYIp1cv36dTp060aRJE+bMmYNKpTJ2SEKkiiQDQqQDExMT3Nzc3pkM5M2bl759+zJ37lwiIyMzMDphSIGBgbRp04bChQuzdu1aTE1NjR2SEKkmyYAQ6cTd3Z3z588nu8Qw0VdffUVQUBB///13BkYmDCUqKgoPDw9evXrFtm3bsLGxMXZIQnwQSQaESCeJNej37Nnz1nOKFy9Ox44dmT59OvHx8RkVmjAARVH44osvOHfuHJs3b6Zo0aLGDkmIDybJgBDpxMHB4Z1LDBONGTMGX19ftmzZkkGRCUOYOHEi//zzD8uWLaNWrVrGDkeINJFkQIh01LJlS/bs2fPOT/01atSgQYMGUoQoC1m5ciUTJ07k559/pmvXrsYOR4g0k2RAiHTk7u5OcHAwp0+ffud5o0eP5sSJE/z7778ZFJn4UMeOHePzzz+nT58+fPPNN8YORwiDkGRAiHRUs2ZN8uTJ896hgtatW1O6dGmmTZuWQZGJD3Hnzh06dOhA7dq1+eOPP2QJofhoSDIgRDpKyRJDALVazejRo9m8eTO3bt3KoOhEarx48YLWrVtja2vLxo0bMTMzM3ZIQhiMJANCpDN3d3fOnj3Ls2fP3nler169yJcvH9OnT8+gyERKxcTE0KlTJwIDA9m+fTu2trbGDkkIg5JkQIh01rJlSwB27979zvPMzc0ZNmwYy5Yt4+nTpxkRmkgBRVEYNGgQx44dw9vbGxcXF2OHJITBSTIgRDrLly8fVapUee9QAcDAgQPRaDR4eXllQGQiJaZMmcLixYv566+/aNCggbHDESJdSDIgRAZwd3dn9+7d7y0slCdPHvr378/8+fMJDw/PoOjE26xfv56xY8cybtw4Pv30U2OHI0S6kWRAiAyQuMTwzJkz7z13xIgRhISEsHjx4gyITLzN6dOn6d27N926dWPixInGDkeIdCXJgBAZoGbNmuTOnZtdu3a991wnJye6du3KzJkziYuLy4DoxJv8/f1p164dlStXZsmSJbKEUHz0JBkQIgNoNJoULTFMNGbMGO7du8fGjRvTOTLxptDQUFq3bo2FhQWbNm0iR44cxg5JiHQnyYAQGaRly5acOXOGwMDA955buXJlmjZtytSpU1EUJQOiEwBxcXF88skn+Pv7s337dhwcHIwdkhAZQpIBITJIy5YtURTlnbsYvm7MmDGcPXuWw4cPp3NkAhKWEA4fPpy9e/eyfv16ypYta+yQhMgwkgwIkUEKFChApUqVUjxU4ObmRoUKFWQDowwyd+5c5s+fz++//07z5s2NHY4QGUqSASEyUOISQ61W+95zVSoVo0ePZseOHfj4+GRAdNnXtm3bGDlyJKNHj6Z///7GDkeIDCfJgBAZyN3dnefPn3P27NkUnd+tWzcKFSokGxilo4sXL9KtWzfatWvHr7/+auxwhDAKSQaEyEC1a9fGxsYmxUMFpqamjBgxgpUrVxIQEJDO0WU/AQEBtGnThlKlSrFixQpMTEyMHZIQRiHJgBAZSKPR0Lx58xQnAwBffvklFhYWzJkzJx0jy37Cw8Np27YtKpWKrVu3YmVlZeyQhDAaSQaEyGDu7u6cPn2a58+fp+j8XLlyMWDAABYsWEBYWFg6R5c9xMfH07NnT27dusW2bdsoWLCgsUMSwqgkGRAigyUuMdy7d2+Krxk+fDgRERH8+eef6RhZ9jF27Fi2bt3K6tWrqVixorHDEcLoJBkQIoMVLFiQihUrpmqooFChQvTo0YNZs2YRGxubjtF9/P744w+mTZvGzJkzad26tbHDESJTkGRACCNo2bIlu3btStESw0SjR4/mwYMHrFmzJh0j+7jt3buXwYMHM2TIEDw9PY0djhCZhiQDQhiBu7s7gYGBnD9/PsXXlC9fHnd3dylR/IGuXbtG586dcXNzY9asWbL5kBCvkWRACCOoU6cOuXLlStVQASSUKL58+XKq5hsIePbsGa1bt8bJyYnVq1ej0WiMHZIQmYokA0IYgampKc2aNUt1MtCoUSOqVKkiRYhSITIykvbt2xMZGcm2bdvIlSuXsUMSItORZEAII3F3d+fUqVMEBwen+BqVSsWYMWPYu3cvFy9eTL/gPhJarZa+ffty6dIltm7diqOjo7FDEiJTkmRACCNp2bIlWq02xbsYJurcuTNFixaV3oEUmDBhAmvWrGH58uVUr17d2OEIkWlJMiCEkRQuXBhXV9dUDxVoNBpGjhzJ6tWr8ff3T6fosr6///6bSZMm8euvv9KpUydjhyNEpibJgBBG5O7unuolhgCff/45uXLlYtasWekTWBZ35MgR+vXrxxdffMHXX39t7HCEyPQkGRDCiNzd3Xn27BkXLlxI1XXW1tYMHjyYP//8k5cvX6ZPcFmUr68vHh4e1K9fn/nz58sSQiFSQJIBIYyobt265MyZk127dqX6Wk9PT2JiYliwYEE6RJY1BQcH07p1a+zt7Vm/fj1mZmbGDkmILEGSASGM6EOXGALky5ePTz/9lNmzZxMdHZ0O0WUtMTExdOzYkeDgYLZv306ePHmMHZIQWYYkA0IYWcuWLTlx4gQvXrxI9bWjRo3iyZMn/PPPP+kQWdahKApffvklJ06cYNOmTRQvXtzYIQmRpUgyIISRubu7o9VqP6iqYOnSpWnXrh3Tpk1L9STEj8kvv/zCsmXLWLx4MfXq1TN2OEJkOZIMCGFkRYoUoVy5ch80VAAJJYqvXbv2wddndWvXruW7775j/Pjx9OzZ09jhCJElSTIgRCbwoUsMIWESYq1atZg6dWo6RJa5nTx5kk8//ZQePXowfvx4Y4cjRJb1USUD4dFx+ASEcMH/BT4BIYRHxxk7JCFSxN3dnSdPnnDp0qVUX5tYovjw4cOcOXMmHaLLnPz8/Gjfvj3VqlVj0aJFsoRQiDTI8lt3+T4NY+Upfw7efIZ/cASvb+yqAhxtLWlcyoGeNR1xyZfTWGEK8U716tXD2tqanTt3Urly5VRf3759e0qUKMHUqVNZu3ZtOkSYuYSEhNCmTRusra3x9vYmR44cxg5JiCxNpaRgY/TQ0FBsbGwICQnJNDt+PQiO4FvvKxy9/RwTtYp47dufRuLj9UvkZbKHK0VsLTMwUiFSpkOHDgQFBXH06NEPun7BggUMGTIEX19fihUrZuDoMo/Y2FjatGnD6dOnOXHiBKVLlzZ2SEJkWil9/86SwwSrz/jTbOZhjt8NAnhnIvD648fvBtFs5mFWn5F67iLzcXd358SJEx9cUbBPnz7Y2toyY8YMwwaWiSiKgqenJwcOHGDDhg2SCAhhIKlKBmxsbJgwYcIH3UilUjF06NAPuvZ1Xgd9GbvxCkHn93B3cmuiH/um+Np4rUJ0nJaxG6/gdTDl1wmREdzd3YmPj2ffvn0fdL2FhQVDhw5l8eLFBAUFGTi6zGHWrFksXLiQBQsW0KRJE2OHI8RHI0v1DKw+48+0PbcM0ta0PbdY80YPwY4dO1KV7DRq1Ijy5csbJB4hHB0dKVu2bJqWCA4ZMgSA+fPnGyqsTGPLli2MGjWK//3vf3zxxRfGDkeIj0qWSQYeBEcwfouPQdv8YYsPD4IjdN/v2LGDiRMnGvQeQqRGy5Yt2bVrFymYypOsvHnz0rdvX+bOnUtkZKSBozOe8+fP0717dzw8PJg8ebKxwxHio5NlkoFvva8Q9565AakVp1X41vuKQdsUIi3c3d0JCAjg8uXLH9zGV199RVBQEH///bcBIzOeR48e0bZtW8qWLcvy5ctRq7PMny0hsow0/VZNmDABlUrFjRs36Nq1K7ly5cLOzo7hw4cTFRWV7DWbNm2ifPnymJubU65cuSS7td2/f5/BgwdTqlQpLCwssLOzw72tBwfP+iQ7UVCJjSZolxcPZnXHf0YXnm+dTnzUqyTnRd45y5MVX+M/vRP+M7rwbN0EIp/6cfT2c24/C+Ozzz5j3rx5QML8hsSv1EqcG/G+5wkJf+S++OILChYsiLm5Oc7OzgwaNIiYmJhU31d8HOrXr4+VlVWahgqKFy9Ox44dmT59OvHx8QaMLuO9evWKtm3bYmJiwpYtW7C0lJVAQqQHg9QZ6Nq1K0WLFuWXX37h5MmTzJkzhxcvXiT5ZHLs2DE2btzI4MGDyZkzJ3PmzKFTp074+/tjZ2cHwJkzZzh+/DjdunWjcOHC+Pn5MWOOF3EmxynQbz5qU/31xMF7F6A2t8KmXg/igh8SdmEncaGB5Ovxi+7N/NXVAwRtm0mOYlXI3egzlNhowi7s5OmKryn0xVxWnPRnwIABBAQEsHfvXpYvX56m1yMlzzMgIIAaNWrw8uVLvvzyS0qXLs2jR49Yv349ERERsvVqNmVubk6TJk3YuXMnY8eO/eB2xowZQ82aNdmyZQseHh4GjDDjxMfH06NHD27fvs2///5LgQIFjB2SEB8vJQVCQkIUQAGU8ePH646PHz9eAZR27drpnT948GAFUC5duqQ7BihmZmbK7du3dccuXbqkAMrcuXN1xyIiIpLcv9IQLwVQ7Np8pTiN3aY4jd2m2LUakdBm/hKK45hNuuO5G/dVAMW+0zjFaew2pchX6xS1uZViXbGF7hynsduUwp7LFdX/H28w9YCiKIoyZMgQJYUviaIoitKwYUOlXLlyesdS+jw//fRTRa1WK2fOnEnSrlarTXEM4uMzf/58xcTERHn58mWa2mnQoIFSu3ZtA0WV8UaOHKmo1Wplx44dxg5FiCwr8f07JCTknecZZPAtcQZzIk9PTyBhQt7rmjVrpre1aIUKFciVKxd3797VHbOwsND9f2xsLPcDnhJkkge1uRUxT+4kubd1pZaoTP7r4MhZuRWoTYi8k1CWNereBbTR4ViVbUh8RIjuC5Ua84IlifK/jH9QhEFLF7/veWq1WjZt2kTbtm2pVq1akuulrGr2ltYlholGjx7NiRMn+Pfffw0UWcb5/fffmTlzJnPmzMHd3d3Y4Qjx0TPIMIGLi4ve98WLF0etVuPn56d33NHRMcm1efLk0dvHPTIykl9++YUlS5bw6NEjvVnV2ujwJNeb5imo973azAITa1viQp4BEPsiAICnq75NNnaVuSUK4BeUtO0P9b7nGRgYSGhoqCxLFMkqWrQopUuXZufOnXTq1OmD22ndujWlS5dm2rRp1K1b14ARpq/du3fj6enJsGHDknzQEEKkj3TZm+Btn2xNTEySPf76G76npydLlixhxIgR1K5dm8BoNRO2Xef55inwIcut/v8auzajMLHOk0ysCZ0jMXGG2ws+Jc9TiHdxd3dn7dq1KIrywT1FarWa0aNH079/f27dukXJkiUNHKXhXb16lS5dutCyZcuPupKiEJmNQYYJfH31q/ndvn0brVZL0aJFU93W+vXr6dOnD9OnT6dz5840aNyUHIXLok1mhQD898k/kTYmkvhXwWhsHADQ5EmYdGRiZYNF0UpJvnI4VQDATKNO8kf3yZMn6VLJzd7enly5cnH16lWDty0+Du7u7jx69CjNPyO9evUiX758TJ8+3UCRpZ8nT57QunVrihUrxqpVq96aVAshDM8gyUDikrxEc+fOBfigsT4TExO9T9BF7awIO7cVlOQ/ub+6uAsl/r/x/rALO0Abj0WxhLF4C+cqqMwtCTm+Vu+8RPERIaiAV4/vcf/+fSChsqCdnR0FChSgadOmqX4O76NWq+nQoQNbt27l7NmzSR5PfP6xsbHcuHGDx48fGzwGkbnVr18fS0vLNC0xhITVCcOGDWPZsmU8ffrUQNEZXmRkJO3btyc2NpatW7eSM6fsMCpERjLIMMG9e/do164dLVu25MSJE6xYsYIePXpQsWLFVLfVpk0bli9fjo2NDWXLluXEiROEn9+O2iL53ZaU+DiervoOyzL1iAt6RNiFHZgXLouFS00A1OaW2LkN5vm2GTxeOhyrMg1QW9oQFxpI5O0z5ChchvyNelCrWhtdm4cPH9b9f4UKFVL9HFJi8uTJ7Nmzh4YNG/Lll19SpkwZHj9+zLp16zh27Bi5c+fm0aNHlClThj59+rB06dJ0iUNkTjly5KBx48bs3LmTr7/+Ok1tDRw4kJ9//hkvLy8mTZpkoAgNR6vV0qdPH65evcqRI0coUqSIsUMSItsxSDKwZs0afvjhB8aOHYtGo2Ho0KFMnTr1g9qaPXs2JiYmrFy5kqioKOrWrUv/yYtZ+G3ytchtmw8k/NohQo6uRNHGY1W2AXmaDdDr8rcq1wgTa1tCTq4n5NRGiI/FxNoO8yLlyFWxOW7lCxFka0twcHCS9h0dHYmOjsbc3PyDns/bFCpUiFOnTjFu3DhWrlxJaGgohQoVwt3dXQqrCCChZ23EiBGEhoamaevwPHny0L9/f+bPn8/YsWOxsrIyYJRpN27cONavX8/GjRupWrWqscMRIltSKSmY1fa2/ZAnTJjAxIkTCQwMJG/evOkWpO/TMJrPOpJu7e8b2YBcRNKsWTOuXbuWpGqblZUVTZs2pVWrVri7uye7WkAIQ7t79y7Fixdn48aNaS4cdP/+fYoXL87MmTN1S38zg6VLl9K3b1+mTp3K6NGjjR2OEB+dt71/vylLFPl2yZeT+iXyYqI27Pp7E7WK+iXyUsIhJw4ODhw7dow6deroap/XrFmTixcv8v333/PixQuGDBmCk5MT5cuXZ8yYMRw8eFBKB4t0U6xYMUqWLJnmeQMATk5OdO3alRkzZhAXZ7iaGmlx6NAhvvzyS/r378+oUaOMHY4Q2VqWSAYAJnu4ojFwMqBRq5js4ar7PleuXOzZs4c2bRLmD7Rt25aKFSsyduxYjhw5wvPnz1m7di01atRgxYoVNGnShLx589KxY0f++usvHj16ZND4hHB3d2fnzp0GWZY6ZswY/Pz82LhxowEiS5ubN2/SsWNHGjZsyLx586TQlhBGlmWSgSK2lkxsV86gbf7YrhxFbPXH53PkyMGGDRtYtGhRkoInuXPnpkuXLixevJhHjx5x7tw5/ve///H06VMGDBhA4cKFqVixIt988w1HjhwhNjbWoPGK7Mfd3Z2HDx/i45P27bsrV65M06ZNmTp1qlFrXjx//pzWrVuTP39+1q1bh6mpqdFiEUIkSNOcAWPwOujLtD230tzOGLdSDGlcwgARJQgODmbPnj3s2LGDXbt2ERgYiI2NDc2bN6dVq1a0bNlSNloRqRYVFYWtrS0TJ05kzJgxaW5v9+7dtGzZkoMHD9KoUaO0B5hK0dHRNG/enBs3bnDq1CmcnZ0zPAYhspOUvn9nuWQAYPUZf8Zv8SFOqyS7rfHbmKhVaNQqfmxXjk+qp98kQK1Wy7lz59i5cyc7duzg9OnTKIpC5cqVdZMQa9asiUaTLgUgxUemdevWREVFsX///jS3pSgKlSpVonDhwmzfvt0A0aXu3n369GHt2rUcOHCAOnXqZOj9hciOPupkAOBBcATfel/h6O3nmKhV70wKEh+vXyIvkz1ckwwNpLfAwEBdr8Hu3bsJCgoiT548uLm56XoNHBwcMjQmkXV4eXnx1VdfERQUZJBiPMuXL+fTTz/l6tWrlCtn2KG3d5k0aRI//PADq1atolu3bhl2XyGys48+GUjk+zSMlaf8OXjrGf5BEbz+ZFSAo50ljUs60KuWIyUcjF/VLD4+njNnzrBjxw527typq0BYrVo1Xa9B9erVpRSr0Llz5w4lSpRg06ZNtG/fPs3txcbG4uzsTPPmzVmyZIkBIny/VatW0aNHDyZNmsT333+fIfcUQmSjZOB14dFx+AWFExOnxUyjpqidFVbmmbsr/unTp+zevVvXa/Dy5Uvs7Oxo2bIl7u7utGjRIl1rOIiswcXFhaZNm7JgwQKDtDdt2jS+/fZb7t27R6FChQzS5tscP36cJk2a0LVrV5YtWyYrB4TIQNkyGcjq4uLiOHXqlK7X4MKFC6hUKmrUqEGrVq1o1aoVVapU0dVBENnHsGHD2Lx5M35+fgZ5Mw0NDaVIkSIMHDiQ3377zQARJu/u3bvUqlWL0qVLs3fvXoNX8hRCvJskAx+BgIAAdu3axc6dO9mzZw+hoaE4ODjoeg3c3NywtbU1dpgiA+zcuZNWrVrh4+ND2bJlDdLm119/zcKFC3nw4EG6/F6/fPmSOnXqEBsby8mTJ7GzszP4PYQQ7/ZRVSDMrgoWLMjnn3/OunXreP78OYcPH6Zv375cuHCB7t27Y29vT7169fj555+5cOGCUdeOi/TVqFEjcuTIYZBqhImGDx9OZGQkf/31l8HaTBQbG0uXLl148uQJ27Ztk0RAiExOegayqIcPH7Jz50527tzJ3r17efXqFfnz58fd3Z1WrVrRvHlzbGxsjB2mMCB3d3diY2PZt2+fwdr87LPPOHDgAHfu3DFY8R9FURgwYABLly5lz549RqlnIIRIID0DH7nChQvTv39/Nm7cSFBQEPv376dXr16cOnWKLl26YGdnR8OGDfn111+5fPmy9Bp8BNzd3Tl69CivXr0yWJujR4/mwYMHrFmzxmBtTp8+nT///JM//vhDEgEhsgjpGfgI3b9/X1fwaP/+/UREROi2R27VqhVNmzaVf8csyNfXl5IlS7Jlyxbatm1rsHZbtWrFo0ePuHjxYponJ3p7e9OpUye++eYbfv75ZwNFKIT4UDKBUAAJ5V+PHDmiSw5u3ryJRqOhfv36uroGZcuWleVeWUSJEiVwc3Nj/vz5BmvzwIEDNG3alN27d+Pm5vbB7Zw7d4769evTpk0bVq9eLatehMgEJBkQybp7964uMTh48CCRkZE4Ojrqeg2aNGmCtbW1scMUb+Hp6cm2bdu4e/euwRI4RVGoVq0atra27N2794PaePDgATVr1sTR0ZGDBw9iYWFhkNiEEGkjyYB4r8jISA4fPsyOHTvYsWMHd+7cwczMjAYNGuh6DUqVKiW9BpnIjh07aN26NdevX6d06dIGa3f16tV0796d8+fPU7ly5VRdGxYWRv369Xn58iWnTp0iX758BotLCJE2kgyIVPP19dX1Ghw6dIjo6GicnZ11iUHjxo2xtMzYfR2EvoiICGxtbfnll18YOXKkwdqNi4vDxcWFunXrsmLFilRd16FDB44ePcrx48czdK8DIcT7STIg0iQ8PJxDhw7peg38/PwwNzenUaNGumqIJUoYbgtokXItWrRAURT27Nlj0HbnzJnDV199xd27d3F0TNmunsOHD2fevHls376dFi1aGDQeIUTaydJCkSZWVla0bt2aefPmcffuXa5fv87kyZOJj49n9OjRuLi44OLiwvDhw9m1axeRkZHGDjnbcHd35/Dhw4SHhxu03c8//5xcuXIxa9asFJ3v5eXFnDlzmDt3riQCQmRx0jMgUu3Vq1ccOHBA12vw4MEDLCwsaNKkiW4iorOzs7HD/GjdvHmT0qVLs3XrVtq0aWPQtr///ntmz57NgwcPyJ0791vP27FjB23btmX48OHMmDHDoDEIIQxHhglEhlAUhWvXruk2Vzp69ChxcXGUKlVKN9egQYMGskGNASmKQvHixXF3d2fevHkGbfvp06c4OjoyceJExo4dm+w5ly9fpm7dujRu3Bhvb2/ZbluITEySAWEUoaGh7Nu3T5ccBAQEYGVlRdOmTXF3d8fd3R0nJydjh5nlDRkyhJ07d3Lnzh2Dr/bo378/27Zt080Ted3jx4+pWbMmefPm5ciRI7IMVYhMTpIBYXSKonDlyhXdcMLx48eJj4+nXLlyuuGEunXrYmZmZuxQs5xt27bRtm1bbt68ScmSJQ3a9o0bNyhTpgyLFi3i888/1x2PiIigYcOGBAQEcPr0aQoVKmTQ+wohDE+SAZHpvHz5kr179+o2WHry5AnW1tY0b95cN6QgbzApEx4ejq2tLVOmTGH48OEGb799+/b4+vpy9epV1Go1Wq2WLl26sGvXLo4dO5bqWgRCCOOQZEBkalqtlkuXLul6DU6ePIlWq6VChQq6XoPatWsbbCe9j5GbmxtqtZpdu3YZvO1jx45Rv359tm3bRuvWrRk7dixTpkxh06ZNtGvXzuD3E0KkD0kGRJYSHBzMnj17dL0GgYGB5MqVCzc3N1q1akXLli0pUKCAscPMVGbOnMk333xDcHCwwYtBKYpCnTp1MDc3p3fv3vTr148ZM2YYtNCRECL9STIgsiytVsu5c+d01RBPnz6NoihUrlxZN5xQs2ZNNBqNsUM1quvXr1O2bFm2b99Oq1atDN7+xo0b6dSpEyYmJvTv35/58+dLaWohshhJBsRH4/nz5+zevZudO3eya9cugoKCyJMnj16vgYODg7HDzHCKouDs7Ezbtm2ZO3euwdv38fGhQoUK2Nvb8/DhQzQaDeHRcfgFhRMTp8VMo6aonRVW5tk7KRMiM5NkQHyU4uPjOXv2rG6uwdmzZwGoVq2artegevXq2Wbt+6BBg9i7dy+3b982aLuBgYHUqlWLyMhIguLMGDXfm3/vvcQ/OILX/2CoAEdbSxqXcqBnTUdc8uU0aBxCiLSRZEBkC0+fPmX37t3s2LGDPXv28OLFC+zs7GjZsiXu7u60aNGCvHnzGjvMdLNlyxbat2/PrVu3cHFxMUibUVFRNGvWjNuPX1B3pBfnHkVgolYRr337n4rEx+uXyMtkD1eK2MqGVkJkBpIMiGwnLi6OU6dO6eYaXLhwAZVKRY0aNXSbK1WpUgW1+uPZkuPVq1fY2dkxdepUhg0blub2FEWhV69e7LwZgl2LQWh5dxLwJhO1Co1axcR25ehWPWWbHQkh0o8kAyLbe/z4Mbt27WLHjh3s3buXkJAQHBwcdL0Gbm5u2NraGjvMNGvWrBmmpqbs3LkzzW1NnDiRGbuvkafhp2lua7RbSYY2NkxvxbsULVqURo0asXTp0nS/lxBZjexaKLK9AgUK0LdvX9atW0dgYCCHDx/m888/5+LFi3Tv3h17e3vq1q3Lzz//zIULF0hBXmxwV65coXPnzjg5OZEjRw4KFSpE8+bNUzUh0N3dnUOHDqV558iVK1cybeNxgyQCANP23GLNGf9kH/Pz80OlUul95cqVi0qVKuHl5UV8fLxBYhBCpIz0DIhs6eHDh7peg3379hEWFkb+/Pl1BY+aN2+OjY1NusZw/PhxGjdujKOjI3369CF//vw8ePCAkydPcufOnRRPCrx27RrlypVj586dtGzZ8oNiOXbsGG4e3cn/xTy0KsNNvjTXqNk3smGSOQR+fn44OzvTvXt33bLIkJAQ3cTQ0aNHM3Xq1BTdIzo6GrVaLQWqhEiGDBMIkUIxMTH8+++/urkGPj4+mJiYULduXV1y4OrqavA19q1bt+bMmTPcunUryXbBz549S/FySUVRKFq0KB06dGD27NlJHo+IiHhnUaI7d+4kbD7UZQKxtsVSNUfgfUzUKuoUs2P5FzX1jicmA1OnTmX06NF6z6VmzZo8evSIR48evbVdRVGIiorCwsLCYLEK8TGSYQIhUsjMzIzGjRszZcoUrl69yv3795k3bx65c+dm0qRJVKxYkSJFitC/f3+8vb0JDQ01yH3v3LlDuXLlkiQCQLKJwIoVK6hatSoWFhbY2trSrVs3Hjx4gEqlwt3dnZ07d9KoUSPKly/PuXPnaNCgAZaWlnz77bcABAUF0bt3b3LlykXu3Lnp06cPR48epUSJEphY2xKV21mXCMQGPSDQezIPZnXj/lQPHi8dQYTvKV0ssS+fcP/XNoSe3pQkzqiH17n/axvCrx0mXqtw9PZzbj8LS9FrolKpyJcvX5KCUkWLFqVNmzbs3r2batWqYWFhwcKFC3WPffbZZ7pzly5dikql4t9//+Wrr77C3t4eKysrPDw8CAwMTFEcQmQ3kgwI8QZHR0cGDBjA5s2bCQ4OZu/evXTt2pVjx47RsWNH7OzsaNKkCVOnTsXHx+eD5xo4OTlx7tw5rl69+t5zf/75Zz799FNcXFyYMWMGI0aMYP/+/TRo0ICXL1/i7u6Or68vUVFRPA8Kwq1FSwoVL8PXE36hdr0GaLVa2rZty6pVq+jTpw8///wzjx490nXRV3Trgok6oecjJvA+j/8eTWzQQ3LV6oxtky9QmeYgcMNPRNw8DoBp7vyYFy5L+LVDSWINv3YIlZkFFi4JvQEmahUrTiY/dyAiIoLnz5/z/Plz7t69y7x589i1axd9+vRJcu7Nmzfp3r07zZs3Z/bs2VSqVOmdr5mnpyeXLl1i/PjxDBo0iK1btzJ06ND3vtZCZEdSOkyIdzA3N6dZs2Y0a9aMGTNmcO/ePd1wwvjx4/n6669xdHTUDSc0adIEa2vrFLU9evRo3N3dqVSpEjVq1KB+/fo0bdqUxo0b641/379/n/Hjx/PTTz/pPuUDdOzYkcqVKzN//nza9vqSRqPmcX7jQkKfPMG2xRBO5HfnxAtQnYMft0zi2okTfDfpV376/n8oisL58+c5cOBAwj1C4oi3S0hqXuz7A00uewr0mYlKkxCHdZXWPF3xNS8OLcWyVB0ArMo3IXiXF7FBDzC1KwKAEh9HxPWjWJasg9o0BwDxWoWDt54xgXJJXoPx48czfvx4vWODBg1i4sSJSc69ffs2u3btokWLFil6fe3s7NizZ49ueEer1TJnzhxCQkLSfT6IEFmN9AwIkQrOzs4MHjyYbdu2ERwczK5du+jQoQMHDhygffv22NnZ0bx5c2bOnMmNGzfe2WvQvHlzTpw4Qbt27bh06RJTpkyhRYsWFCpUiC1btujO27hxI1qtlq5du+o+RT9//pz8+fNTtFgJ5q7YRNvfT+FvXpToOC2YmGJdoZnuegXwv3wC1Br+flmC3otO8f0vM1m8eLHuk3LQqxgA4iPDiLp/GcvS9dDGRBAfEUJ8RAjayFByOFch7kUAcWHPAbAqXQ+Vxoxwn0O6e0XeO482MhSr8o31nqt/UATh0XFJXoMvv/ySvXv3snfvXjZs2MCQIUNYuHAhX331VbKvfUoTgcS2X5/nUb9+feLj47l//36K2xAiu5CeASE+UI4cOWjRogUtWrRg9uzZ3L59W9dr8M033/DVV1/h7Oys6zVo3Lhxkol81atXZ+PGjcTExHDp0iW8vb2ZOXMmnTt35uLFi5QtWxZfX18URXlrhUEzB2cKgG68X5PTDpWJ/sz6uNBnmFjnQW2ag+N3gzgS40z37+fSr0sDvWWMcS8CAIWQoysIOboi2ftpw0MgZ17UOayxKFGD8GuHyd2gNwDhPocwyWlHDqcKetcogF9QOOUK6n8id3FxoVmz/xKXjh07olKpmDVrFp9//jmurq66x5ydnZON520cHfWLHuXJkweAFy9epKodIbIDSQaEMJASJUrg6emJp6cnERERHDp0SLdUbv78+Zibm9OoUSPdHgqvv7mbmZlRvXp1qlevTsmSJXX1EcaPH49Wq0WlUrFz507dngubLj5k3bmE2faJ3fGJVBqzd8YZfu8ST1d9S3T3yTidfuNT8v/3ZOSq0ZEcxaoke70mz39bSVuVb0LEjWNEPbyOmb0TkbdPkbNya1SqpJ2OMXHad8aVqGnTpnh5eVGhQgXu3btH0aJFAVK9cuBt+1MYo56EEJmdJAMiXS1dupS+ffty5swZqlWrZuxwMoylpaWuBLKiKNy6dUvXazBmzBiGDx9OiRIldIlBw4YNdW92ia/T48ePAShevLhuh8KSJUvSuf9INvw166331tgWSnoslwNR96+gjY3SO75ox0n983LnT/gfExMsilZ67/O0KFYVtaUN4dcOEVegJEpsdJIhgkRmmpSNSsbFJR1OeJsJEyZw//59li1bxrJly7CwsNCtznj16lWK2xEiu5M5A0KkM5VKRalSpRgxYgR79uwhKCiILVu2UKZMGby9vXF3d8fOzo42bdowb948VqxI6J4vVaoUkNB1bmJiwsSJE/EPCufgzWcA2LYYjG3rr8jjNhi7NqOwazMKjW3hZD+V53CuAto4Xl3crTumKFrCzm/TO8/EKjfmjq68urCLuFfBSdqJjwjRf25qE6zKNCDi+lFeXdmPqX1RzBySduergKJ2Vil6vbZu3Zqi815Xq1Ytli9fzowZMyhQIKHnYtiwYdILIEQKSc+AyJbCw8OxskrZm5OhWVtb07ZtW7755hs0Gg19+vQhPDycy5cvs2PHDhRFwdTUFF9fX/bu3UuDBg346aef+Oabb9h76goR8Qnd3zHP/Ym6ex7rSi2xrpKwRPDVpd1oI5PWQbAsWQuzAiV5cWARFiVqAPDy0DIUbULZX1OT/xIIW7dBPF3xNY8XDcW6ohua3PmJD39JTMAN4kKfU/ALL722rVybEnZuK9H+l8nd6LNkn7OjnSVW5v/9udFqE4YMzp8/r0t+wsLC2L9/Pxs2bKBEiRKp2pbZycmJXr16AQlzOfr27cuVK1c4efIktWvXTnE7QmRX0jMgjC4mJoYffviBqlWrYmNjg5WVFfXr1+fgwYN651WpUoWOHTvqHUusDHj58mXdsTVr1qBSqbh+/TqQ0JWsUqm4du0aPXr0IE+ePNSrV093/tuK+bwusZjPtWvXdBMBCxUqxJQpU5I8n6ioKCZMmEDJkiXJkSMHBQoUoGPHjty5c0d3jlarpW7durx48YK///6bDRs2cPv2bZycnGjdujWffPIJW7Zswc3NDTs7O06cOMGXI74mNDqeKP+EugRRd89j4VwZS5eaSWJIFBf6nGcbfuLBzK7EvnyMJk9Bou5dAEBtkRNbt0EAPNk6EyU6oVvdLK8j1pVaoo0MJezcVoL3LODVxZ0oqIh9EcCLg0t07Yec2siLvQvg/3sjwq8eJPzGMb0YTNQqjoxpwtChQ1m5ciXlypWjZMmSAKxatYrevXvTu3dvBg8ezKZNm6hXrx4jR45863NKjXv37ul+vr788ksAWrZsmezPFyRfmOnSpUuoVKokGyHduHGDzp07Y2trS44cOahWrZreKhAhshLpGRBGFxoayl9//UX37t3p378/YWFhLFq0iBYtWnD69GldcZn69euzatUq3XXBwcH4+PigVqs5evQoFSokzGA/evQo9vb2lClTRu8+Xbp0wcXFhcmTJ+u6j3/++WfGjRtH165d6devH4GBgcydO5cGDRpw4cIFveqAL168oGXLlnTs2JGuXbuyfv16/ve//+Hq6oq7uzsA8fHxtGnThv3799OtWzeGDx9OWFgYe/fu5erVqxQvXhyAAQMG6OZTVK1alXv37uHl5YW9vT3e3t6YmpqiKApXr15lx44d7Ny5k3svrSn06VSCDq8g5N9VOHQZjzpHQk2DxO57h07f645pY6N5uvo74kMDyVm1LSbWtoT7HESVpwCxgX7Y1OqMNuLl/z87hcgH17D8/16D2KCHoFJjaudIgc9mAhD92Jcnd85gXqS87jUJO7sFC5eaxIUGotKYozI15/mmX1F1Ho9lieoJsf3/KocDBw6wdu1ahg4dSt68ealTpw758+enQoUKxMXFMXz4cKysrPjjjz901QUT+fn5vfNnyMvrv96Kzz77jMuXLzNz5kzs7Oz0fr5cXFze+vOVWJjp9OnTDBo0iNKlS7N58+ZkCyD5+PhQt25dChUqxNixY7GysmLt2rV06NCBDRs24OHh8c54hch0lBQICQlRACUkJCQlpwuhs2TJEgVQzpw589Zz4uLilOjoaL1jL168UPLly6d8/vnnumPr1q1TAOXatWuKoijKli1bFHNzc6Vdu3bKJ598ojuvQoUKioeHh+778ePHK4DSvXt3vXv4+fkpJiYmys8//6x3/MqVK4pGo9E73rBhQwVQ/v77b92x6OhoJX/+/EqnTp10xxYvXqwAyowZM5I8T61WqyiKohw9elQBlJUrV+o9vmvXrmSPJ2ow5YDiNHabYlO3u0LCar0kXxrbworT2G2K09htSp6m/RVAydthrOI0dptSZNQGpcio9YomTwEFUBw++UnJ4VRBUZlZKphZKLa1OyvFvt2uOP5vq6K2yKVYlq6noFIrRb5al9Bek34J349YrbtHkVEblPx9ZiqAYtd6pOI4ZpNiau+k5HCqoDiN3aYU+3a70uuvkwqgqNVqxcfHR+85jRgxQgGUU6dO6Y49e/ZMsbGxUQDl3r17yb4WiRL/bW/evKkEBgYq9+7dUxYuXKiYm5sr+fLlU8LDw1P887VhwwYFUGbNmqU7Fh8frzRp0kQBlCVLluiON23aVHF1dVWioqL0/n3r1KmjuLi4vDNmITJSSt+/ZZhAGJ2JiQlmZgnL4bRaLcHBwcTFxVGtWjXOnz+vO69+/foAHDlyBEjoAahevTrNmzfn6NGjALx8+ZKrV6/qzn3dwIED9b5/VzEfFxeXJN3I1tbWunFpSFgOWKNGDe7evas7tmHDBvLmzYunp2eS+ycWwFm3bh02NjY0b95c775Vq1bF2to62e7rV9Fx+AdH6B2z9/gWh24/6X3lbT1c93jk3bOYWNtiWaouAC/2LiRo51xM8yasv3+x/w+i7l/GpnZnchQuy6v7V9CoVcQGPUAbGUquWp0BiH50A4Cohz6Y5nXU9TzEBPoRceMYQTtmY2JtSw7nymijwzEvXI6YJwlDIhq1iskeCbUCGjZsSNmyZfWew44dO6hVqxY1atT473nZ29OzZ88kr8G7lCpVCnt7e5ydnRkwYAAlSpRg+/btWFpapvjna9euXZiamtK/f3/dMbVazZAhQ/TuFRwczIEDB+jatSthYWG6f7+goCBatGiBr6/vOzdZEiIzkmECkSksW7aM6dOnc+PGDWJjY3XHXy80ky9fPlxcXDh69CgDBgzg6NGjNG7cmAYNGuDp6cndu3e5fv06Wq022WTgzaI17yvm8+aWuIULF06yc2GePHn05ivcuXOHUqVKJdlo5837hoSEvHVXwmfPniU5dj8onDfnxZsXKYeJ5dvL6saFBKLJXUAXcw6nCoSe9k4YAgC0MVHkaT6AXFXbgrKWl8f+4fOaBZnitR0Ta1vM85fAzMGZ6Ac+WDhXJvrhNaxK/zfXIuLGv4T8uwo0ZqCN55HXp6/dPeGeP7Yrp9u+OLmiQffv36dmzaRzHhJXUqTUhg0byJUrF6amphQuXFg3HJMoJT9f9+/fp0CBAkkKQ5UoUULv+9u3b6MoCuPGjWPcuHHJxvPs2TMKFUq6xFOIzEqSAWF0K1as4LPPPqNDhw6MGTMGBwcHTExM+OWXX/Qm3QHUq1eP/fv3ExkZyblz5/jhhx8oX748uXPn5ujRo1y/fh1ra2sqV66c5D5vFq1JrpjP697cY8BQRWy0Wi0ODg6sXLky2cft7e2THEtpwZ53sSrXCKtyjYjwPUXghknkbT1CVynQvHBZ0MaRO8yPYvEPuFa4nO541EOfhN6CiBDMi/y3v0COohUJ+Xc15gVKYl2+CSbWtmCi4dXlvURcO8wYt1J8Uv2/KoDpud1wgwYNyJs3b7KPpebnKyUSV0KMHj36reWR30wghMjsJBkQRrd+/XqKFSvGxo0b9T55v7mBDSQMFSxZsoTVq1cTHx9PnTp1UKvV1KtXT5cM1KlT561v3K97s5iPIRQvXpxTp04RGxubpGfh9XP27dtH3bp1U/wGmdKCPa/T2NgTG3gfRVH0XtfY4IdJzjUvWBJMNGxet5rH18/RpfuXnNCosXBy5dWlPUT5XUo477XJgxE3j6PSmJHvk0m6DY1M1Coir+wDYEjj978hOjk54evrm+T4zZs3U/dk3yGlP19OTk4cPHiQiIgIvd6BN5c4FitWDEjoOXq9lLIQWZnMGRBGl/jG/fon7FOnTnHixIkk5yZ2///2229UqFBBt/tc/fr12b9/P2fPnk12iCA5rxfzefPTvaIoBAUFpfq5dOrUiefPn+vNbn+9TYCuXbsSHx/PpEmTkpwTFxfHy5cv9Y5ptVqe+F6BJAMF72ZRrBrxr4KJuPnvf23FRvHq4q4k56o0Zpjnd2Gn9xoePXrEtiVzKOqzHMcihVHiogk7txVN7gJorG1fu0gNKlCUeP5/92MKxz0h7t7pFMfYqlUrTp48yenT/10TGBj41l6TD5HSn68WLVoQGxvLn3/+qTum1WqZN2+e3nkODg40atSIhQsX6qpEvi4wMNBgsQuRUaRnQGSIxYsXs2tX0jeh4cOH06ZNGzZu3IiHhwetW7fm3r17LFiwgLJlyyYpKVuiRAny58/PzZs39SbpNWjQgP/9738AKU4Gihcvrivm4+fnR4cOHciZMyf37t3D29ubL7/8ktGjR6fqeX766af8/ffffPXVV5w+fZr69esTHh7Ovn37GDx4MO3bt6dhw4YMGDCAX375hYsXL+Lm5qYrMrRu3Tpmz55Nu3btOHjwIN7e3mzatImnT5/iNHQpWP/XFR5x819Upkl7FiycK2FilQfrSi0IO7+NoG0ziHlyGxOrPAlLCzXmycbuULISDx5dx9LSkgEDBnD27Fnu/P0dqDXEBj/CqnTdhL0L/v/TtUXx6oSd2UTIxonUa9GBczv/4eTjB5QuXVpvHsW7fP311yxfvpyWLVvqLS10cnJKcRvvk9Kfrw4dOlCjRg1GjRrF7du3KV26NFu2bCE4OKES4+u9CvPmzaNevXq4urrSv39/ihUrxtOnTzlx4gQPHz7k0qVLBoldiAxjyKUJQrwpcWnh274ePHigaLVaZfLkyYqTk5Nibm6uVK5cWdm2bZvSp08fxcnJKUmbXbp0UQBlzZo1umMxMTGKpaWlYmZmpkRGRuqdn7j8LDAwMNkYN2zYoNSrV0+xsrJSrKyslNKlSytDhgxRbt68qTunYcOGSrly5ZJcm1yMERERynfffac4OzsrpqamSv78+ZXOnTsrd+7c0Tvvjz/+UKpWrapYWFgoOXPmVMqVK6e0b99e8fDw0C2tc3Z2VkaNGqUcO3ZMGbfpslLs2+3vXFoIKPm6T9Yt/Ss0aLFiUaKmojI1V9QWuZSc1dopDl0nJjmv2LfblR7j5iuA4u7urotRq9UqXbt2VQDFzc1NqdeoqZLLqaxiVqCkYurgrOQrUEjJmTOnotFoFDs7OwVQhgwZorz5pyXxeHIuX76sNGzYUMmRI4dSqFAhZdKkScqiRYtStbTwbf+2ic8hpT9fgYGBSo8ePZScOXMqNjY2ymeffab8+++/CqCsXr1a79w7d+4on376qZI/f37F1NRUKVSokNKmTRtl/fr174xZiIyU0vdvlaK8f/ZTaGgoNjY2hISEkCtXLkPlIUJke0FBQWzduhVvb2/27NlDVFQUFSpUwMPDAw8PDypUqKD7ROr7NIzms46kWyz7RjaghEPO954XHx/PzZs3OXPmDGfOnOHs2bNcvHiR6OhoAOzs7OjQoYNuF0ZXV9e3zp/ICjZt2oSHhwfHjh2jbt26xg5HiFRJ6fu3JANCZLCHDx+yadMmvL29OXz4MFqtltq1a+sSgDeXxb2u96JTHL8bpKvqZwgmahV1itmx/Iu3lzV+n5iYGK5evcq4cePYu3cvpUqV4vr168THx2Nubk7FihV1yUH16tUpVapUiiZ5ZrTIyEi9SZ3x8fG4ublx9uxZnjx5kq4rIoRID5IMCJGJ3Lx5E29vbzZu3MiZM2fQaDQ0adIEDw8P2rdvr9tp730eBEfQbOZhog2w1DCRuUbNvpENdfUA0iIgIAAnJyemT59Ov379uHjxImfPntX1IiSuErC2tqZKlSpUr16datWqUb16dYoVK5akjkNG69evH5GRkdSuXZvo6Gg2btzI8ePHmTx5Mt98841RYxPiQ0gyIIQRKYrC+fPn2bhxI97e3ly/njAxz93dXTeR7fV9D1Jj9Rl/xm68YrBYf+voqlcPIK26d+/O2bNnuXnzJmq1/oKlkJAQzp8/r0sOzpw5w/379wGwtbWlWrVquuSgevXqGV64559//mH69Oncvn2bqKgoSpQowaBBgxg6dGiGxiGEoUgyIEQGi4uL49ixY7oVAP7+/tja2tK2bVs8PDxwc3MzWDez10Ffpu25leZ2xriVSlE9gNQ4ceIEderUYfv27bRq1eq95wcGBur1Hpw5c4anT58CUKBAAb3koFq1am8tLiSESEqSASEyQFRUFPv27cPb25stW7bw/PlzChUqRIcOHfDw8KBBgwbpNnlu9Rl/xm/xISY2DkWV8pIhSnwcGhM1kztWNGiPgK59RaFGjRrY2dklu5w0Jdc/evRIb4LimTNndPUXihYtqpccVK1aVf4uCfEWkgwIkU5CQ0PZsWMH3t7e7Nixg1evXlGyZEk6duyIh4cH1apVS9I9nl4u3n6I+w/LMHeqhIla9c6JhYmP540N5PaqSficPpJu3fDLly/n008/5fr165QuXTrN7SmKwp07d/SSg/PnzxMeHo5KpaJUqVJ68w8qVaokk/2EQJIBIQzq2bNnbN68GW9vb/bv309MTAxVqlTRJQBlypQxyuS3yZMn89NPP3H4wk223wzl4K1n+AdF6NUqVAGOdpY0LulAr1qO5DWLp3Tp0tSvX59169alS1zR0dE4OjrSpUuXZKsxGkJ8fDzXr1/XG2K4dOkSMTExaDQaypcvrzfEUL58+Sy9xFGIDyHJgBBp5Ofnh7e3N97e3vz7b0JJ3/r16+Ph4UGHDh1wcnIyanyxsbE4OzvTqlUr/vjjD93x8Og4/ILCiYnTYqZRU9TOCitz/WKjq1atokePHike1/8Q48ePZ8aMGTx8+FBXNjq9xcTEcOXKFb35Bz4+Pmi1WszNzalUqZLeEseSJUtmyiWOQhiKJANCpJKiKPj4+OgSgAsXLmBmZkbz5s3x8PCgXbt2ye4oaCxr1qyhW7duXL58GVdX11RdqygKbm5u3L59Gx8fnyTb9hpC4jLDadOmMXz4cIO3n1IRERFcuHBBbw7CrVsJky+tra2pWrWq3hCDs7Oz0Zc4CmEokgwIkQJarZbTp0/ragDcvn2bnDlz0qpVKzp27Ii7uzs5c76/Kp8x1KlTBwsLC/bv3/9B1/v6+uLq6spXX33F5MmTDRxdgh49enD69Glu3bqVYfMoUuLly5ecO3dObw6Cv78/kFBB8c0ljgULFjRyxEJ8GEkGhHiL2NhYDh8+zMaNG9m8eTMBAQHY29vTvn17PDw8aNq0KebmyW/mk1mcOXOGGjVqsGnTJtq3b//B7fz4449MmjSJixcvUq5cOQNGmODkyZPUrl2bbdu20bp1a4O3b0jPnj1LssTx2bNnABQsWDDJEkc7OzsjRyzE+0kyIMRrIiIi2L17N97e3mzbto0XL17g5OSkKwFct27dLDV23Lt3b/799198fX3TFHd0dDQVKlTAwcGBw4cPG/zTu6Io1KxZkzx58rB7926Dtp3eFEXhwYMHegnC2bNnCQkJAcDZ2Vlv/kGVKlUybS+SyL4kGRDZ3osXL9i2bRve3t7s2rWLyMhIypUrh4eHBx07dqRSpUpZcmz4yZMnODo68uuvv/LVV1+lub2DBw/SpEkTFi1axOeff26ACPWtWLGC3r17G2yZoTFptVrdEsfE5OD8+fNERESgUqkoXbq0Xu9BpUqVyJEjh7HDFtmYJAMiWwoICNAtATx48CBxcXHUqlVL1wPg4uJi7BDTbMKECUybNo2HDx9+cEnjN3366ads376dmzdvGrzCX0YsMzSmuLg4rl+/rpcgXLp0idjYWDQaDa6urnoTFMuVKydLHEWGkWRAZBu+vr66FQAnT57ExMSExo0b6zYByuj69ukpOjoaJycnOnXqxLx58wzW7rNnzyhdujTt27dnyZIlBms30fjx45k+fTqPHj3KsGWGxhQdHc3ly5f1Jiheu3YNrVZLjhw5kl3imJkmWIqPhyQD4qOlKAoXL17UJQBXr17FwsKCFi1a4OHhQZs2bbC1tTV2mOnC0JX9Xvfnn3/y5ZdfcujQIRo2bGjQth8/foyjoyNTp05lxIgRBm07q3j16hUXL17Um6B4+/ZtAHLmzKlb4pjYi1C0aNEsOYwlMhdJBsRHJT4+nuPHj+sSAD8/P3Lnzk2bNm3o2LEjbm5uWFlZGTvMdKUoCtWrVydv3rwfVPP/fbRaLfXr1+fFixdcvHgRMzMzg7bfs2dPTp48ya1bt7LUZM309OLFC90Sx8RehAcPHgCQN29e3dBC4n9TutW1EIkkGRBZXnR0NAcOHMDb25vNmzfz7NkzChQooNsEqFGjRtlq7PX48ePUrVuXHTt24O7uni73uHLlCpUrV+bHH3/k22+/NWjbp06dolatWmzdupU2bdoYtO2PyZMnT3RDC4n/DQwMBKBQoUJ6yUG1atU+2l4wYRiSDIgsKSwsjJ07d+Lt7c327dsJCwujRIkSugmANWvWzLZjq926dePChQtcv349XV+Dr7/+mrlz5+Lj40OxYsUM2naNGjWy5DJDY1IUBX9/f73k4OzZs4SGhgJQvHhxvRoIVapUwdra2shRi8xCkgGRZTx//pwtW7bg7e3N3r17iY6OplKlSroEoHz58tl+7PThw4cULVqUWbNmMXTo0HS9V3h4OGXLlqVs2bLs2LHDoK994jLDa9euUaZMGYO1m91otVp8fX31aiBcuHCByMhIVCoVZcqU0ZugWKFCBVnimE1JMiAyNX9/fzZt2sTGjRs5evQoiqJQt25dXQLg7Oxs7BAzle+++w4vLy8ePnyYIYVttm7dSrt27Vi7di1dunQxWLvptRpCJCxxvHbtmt78g8uXLxMbG4upqaluiWPi8EK5cuXQaDTvb1hkaZIMiEzn+vXruj0Azp07h6mpKc2aNdNtApQvXz5jh5gpRUZGUqRIEXr37s3MmTMz7L4eHh6cOnWK69evG3Q5YHrUSRDJi4qKSnaJo6IoWFhYULlyZb05CC4uLtl2GO5jJcmAMDpFUThz5oxuBcDNmzexsrKiVatWeHh40KpVq2yx5jytFi9eTL9+/fD19aV48eIZdt8HDx5QpkwZPv/8c+bMmWOwdh8/foyTkxO//fYbI0eONFi7ImVevXrF+fPn9YYY7ty5A0CuXLmSbNLk6OiY7YfpsjJJBoRRxMXFceTIEby9vdm0aRMPHz7Ezs6Odu3a0bFjR5o1ayZjl6mgKAqVKlXCycmJLVu2ZPj9Z8yYwejRozl9+jTVqlUzWLu9evXixIkTsswwkwgODtZb4njmzBkePXoEgL29vV5yUL16denFy0IkGRAZJjIykr1797Jx40a2bt1KcHAwRYoU0Y3/16tXT8YmP9Dhw4dp1KgRe/fupVmzZhl+/7i4OKpVq4aJiQmnT5822Bu3LDPM/B4/fpxkF8egoCAAChcurJccVK1alTx58hg5YpEcSQZEunr58iXbt2/XbQIUHh5OmTJldAlA1apVpWvRADp27MjNmze5evWq0V7PU6dOUbt2bWbNmsWwYcMM1m7NmjWxsbFhz549BmtTpB9FUbh//36SJY5hYWEAlChRQm+CYpUqVT7KQmDh0XH4BYUTE6fFTKOmqJ0VVuaZ98OOJAPC4J48eaLbBOjAgQPExsZSvXp1XQKQ1Xeky2z8/PwoXrw48+fPZ8CAAUaNZfDgwaxYsYLr168bbK+HlStX0qtXL3x8fChbtqxB2hQZS6vVcuvWrSRLHKOiolCr1ZQtW1ZvgmKFChUwNzc3dtip5vs0jJWn/Dl48xn+wRG8/qapAhxtLWlcyoGeNR1xyZe5trGWZEAYxN27d3UrAE6cOIFaraZBgwZ07NiR9u3bU6RIEWOH+NEaM2YMixYt4sGDB0b/hPXy5UtKly5N/fr1WbdunUHajImJwcnJCQ8PD+bPn2+QNoXxxcbG6i1xPHPmDFeuXCEuLg5TU1MqVqyoNwehTJkymXYY8UFwBN96X+Ho7eeYqFXEa9/+dpn4eP0SeZns4UoRW8sMjPTtJBkQH0RRFC5fvqxbAXD58mVy5MiBm5sbHh4etG3bFjs7O2OH+dELDw+ncOHC9O/fnylTphg7HABWrVpFjx492L59O61atTJImxMnTmTKlCk8evRIlhl+xKKiorh06ZJeDYTr16+jKAqWlpa6JY6JX8WLFzf6EsfVZ/wZv8WHOK3yziTgTSZqFRq1iontytGtumM6RpgykgyIFNNqtZw4cUKXANy9e5dcuXLRpk0bPDw8aNmypZQ3zWALFy5k8ODB3L17FycnJ2OHAyQkim5ubty+fRsfHx8sLdP+yefJkyc4Ojry66+/8tVXXxkgSpFVhIWFcf78eb05CHfv3gXAxsZGr/egWrVqFClSJMPmzXgd9GXanltpbme0W0mGNnYxQEQfTpIB8U4xMTEcPHhQtwnQkydPyJcvH+3bt6djx440btzY4LvWiZRRFIXy5ctTunRpNmzYYOxw9Pj6+uLq6spXX33F5MmTDdKmLDMUhw4dYunSpUyfPp2zZ8/qzUEICAgAwMHBQS85qF69Og4ODqm6T1hYGFZWVu/sdVh9xp+xG6+8t637v7YhZ5XW2LoNeud57mY3WPDjaO7du0fRokUBaNSoEZDwvCFhfpCzszNLlizhs88+AxKKc02cOJEUvEW/U0rfvzPnQI1IF+Hh4ezatYuNGzeyfft2QkJCcHZ2pmfPnnh4eFCrVi35Y5wJ7N+/n2vXrvH7778bO5QkXFxc+Pbbb5k0aRI9e/akXLlyaW5z2LBhrFy5kh07dtC2bVsDRCmyKjs7O1q0aEGLFi10xwICAvjnn39YvXo1R48eZfv27brHHB0d9ZKDdy1xnDx5MvPmzaNw4cJs3LiRggULArBmzRpmzZrF5cuX0WhMiclVkFz1emFRtKJBnpP3hUcGaSe9STLwkQsKCmLr1q14e3uzZ88eoqKiqFChAiNGjMDDw4MKFSrIEsBMZvbs2VSsWJH69esbO5Rk/e9//2PlypUMHDiQw4cPp3lst0aNGtSsWZM5c+ZIMpBNxcbGEhsbi1arTfLzVLBgQV69esXly5epUKECYWFh3Lp1izVr1uiGGCZPnqxb4giQP39+mjZtSrFixXBycsLc3Bw7OzsePXpEQEAAFStWxNvbm3379vHjjz/SuXNnPvvsMxYd8eXG9WvEvwoy2HOzLNeY7q06pHq47/vvv2fs2LEGi+N9JBn4CD18+JBNmzbh7e3N4cOH0Wq11K5dm0mTJuHh4ZGhJW1F6ty+fZvt27ezaNGiTJukmZub8/vvv9O0aVOWLl3K559/nuY2hw0bRs+ePbl27ZosM8xGFi9ezMSJE/H39wcSPqWXKVOGyZMn6yWGgwYN4n//+x8WFhYMHTqUW7du0bVrV7p27QokzHu6efMmZ86coU+fPiiKwvr164mOjkatVlOuXDndxGdFUQgODqZhw4YoisK0adP46quv8H0axi9+R7B1bGzQ56hFzfH7YdwJfEUJh5QvO9RoNBm6ykJ2pEil8Og4fAJCuOD/Ap+AEMKj44wdEgA3b97k119/pUaNGhQpUoSRI0ei0WiYN28eAQEB/Pvvv4wePVoSgUzOy8sLOzs7unfvbuxQ3qlJkyb06tWLMWPG8Pz58zS317lzZ/Lnz8/cuXMNEJ3ICg4dOsQXX3xBmTJlmDhxIk2bNmXBggVUqVJFt1dConz58mFhYfHWttRqNWXKlOHTTz8FEn6enj17xsmTJ1mwYAG1atXCx8dHd75Wq0Wr1aIoCmvXriU8PJwlh25gok59Av7K5yCP/hjA/akePF4ynCj/q/qPX97H/V/b4LX5RKranTBhQpIPBHFxcUyaNInixYtjbm5O0aJF+fbbb4mOjtY7r2jRorRp04Zjx47RuHHKkhvpGUiBzFhwQlEUzp07p1sBcP36dSwtLXF3d2f48OG0bt1almplMWFhYSxevJhhw4Zlif0bpk+fzrZt2xgzZgxLlixJU1tmZmYMHDiQKVOmMHnyZCltmw1s374da2trNm/ezIkTJ7h79y79+vWjX79+aW576dKlzJ8/H0VRKFOmDN9//z0+Pj4EBgYmOffUqVPkz5+fV69eYWKVh1x1upKrasqGq6IeXCX8+lFyVmuLysSUsPM7eLZ2PPn7TMfMvqjeuSfupX3ooV+/fixbtozOnTszatQoTp06xS+//KLbEfZ1t2/fpnPnzvTq1Yvz58+/t21JBt4hJQUnFOB+cATLT91n6Qm/dC04ERcXx7Fjx3SbAPn7+2Nra0vbtm355ZdfcHNze2f2LDK3pUuXEhkZyaBB756dnFk4ODjw22+/MWDAAD777DMaNmyYpvYGDBjAzz//zJIlS2SZYTZgYmJCfHx8kk+1aVWnTh26du2Ks7MzAQEBzJs3j549e2Jqaqo7J1euXISGhmJtbY2iKIz9bhyzTwYTdmUfL/YuRKXWkLOy+3vvFRt4n/yfzcI8fwkArMo0IODPgbw8uhKHjt/pnfvoRSTh0XEfXLr40qVLLFu2jH79+vHnn38CCZVBHRwcmDZtGgcPHtTrBbh58yZHjhyhYsWKTJ8+/b3tyzDBW6w+40+zmYc5fjchm3tf0YnEx4/fDaLZzMOsPuNvkDiioqLYtm0bX3zxBfnz56dx48Zs2LCBtm3bsm/fPp48ecLSpUtp3769JAJZmFarZe7cuXTu3Nlg5X4zQr9+/ahduzaDBg0iJiYmTW3lz5+fTz75BC8vL+Lj4w0UocisevbsSXx8PLVr1+bvv//mxYsXREZGprndf//9l+HDh9OuXTsGDhzIuXPnKF++PCYmJvz888+cP3+ey5cvAwnbOS9atIgOnw7Askx9HLqMxzSvIyHH16ToXuaFSusSAQCNjQMWLjWJunceRZv0Z9gvKPyDn9eOHTsAkiTKo0aNAtBbZQFQtmzZVE1ClmQgGV4HfRm78QrRcdpUVZ6ChKQgOk7L2I1X8Drom+w5iqLwww8/vLXefGhoKKtXr6Zr167Y29vTtm1bjh07Rv/+/Tl16hT+/v54eXnRtGlTvWxXZF27du3C19fXoBsBZQS1Ws2CBQu4desW06ZNS3N7w4YN4969e0n+sImPj6urKydPnqRUqVKsX7+eLVu2kDt3brp27cqDBw8Mdh8zMzOGDh1KVFQUDRo0oHLlyrry3qampnTu3JmYOC0AKpUay9L1iQ97TlzIs/e2rclTMMkx0zyFUGKj0UaEJnks8T4f4v79+6jVakqUKKF3PH/+/OTOnZv79+/rHXd0TF31Q0kG3rD6jL9BKk8BTNtzizVv9BBotVo8PT2ZNGkSf/75J0+fPgXg2bNn/Pnnn7Rq1Qp7e3u6d+/O3bt3GTt2LD4+Pty4cYNffvmFGjVqGL1MpzC8OXPmUL16dWrVqmXsUFKtQoUKfPXVV0yaNElXQe5DJb4Gc+bMMVB0IjOrXLkyGzduZMuWLbRs2ZKJEyeyc+dO3N3diYsz3OTsxD1UgoODAbC1tSVHjhzY2dlhYmKCmea/v6kmVjYAaKNeGez+iV6/z4dK6Sqj1NaM+ajeVXx8fOjVqxeFChXC3NycggUL0rNnT71ZpO/yIDiC8VtSdm5K/bDFhwfBEUBCIjBgwADmzZsHJPQQeHp60qBBA/Lnz8/AgQOJiIhgypQp+Pn5cfbsWb777jvKli2baZeZibS7ceMGu3fvZtiwYVn233n8+PE4ODgwZMiQNFdM8/T0ZP/+/Sn+vRUfh3z58jF27FgmTpyo+wBkKIlJqr29PZDQo1WpUiUCAwOJiYmhqJ0Vib958WEJCYPa0ua97ca9CEhyLPbFI1Sm5qgtk1b7K2r34RuOOTk5odVq8fXV73F++vQpL1++THPZ8o8mGdi4cSNVqlRh//799O3bl/nz5/PFF19w8OBBqlSpkmSmZXK+9b5CXCqHBd4nTqvwrfcV4uPj6dOnD3/99Zfe4+vXr8fGxoa//vqLJ0+ecOjQIYYPH55p6tGL9Dd37lzy58+vWzOdFVlZWeHl5cWuXbtYv359mtqSZYbZw4sXL5I9HhsbC/BBc6CSWy0QFhbGrFmzyJs3L1WrVtUd/+STT4iPj2fZsmVYmWtwtLVEiYsh/NohTPM6osn5/g3Zoh/dIPrJbd33caGBRPqeIkfRyqjU+p/MC+Wx+ODJg4Buc7BZs2bpHZ8xYwYArVu3/uC24SNZTXDnzh169+5NsWLFOHLkiC77Axg+fDj169end+/eXL58mWLFiiXbhu/TMI7eTvt66TfFaxWO3n5O1SatuXRkd5LHTUxMWLFiBTY2789CtVotMTExWWLZmUiZly9fsmzZMsaMGZPl94Jo27YtHTp0YPjw4bi5uaXoZzo5ZmZmDBo0iN9++41ffvlFlhl+pEaNGkVQUBAdO3bk5cuXPHz4kB9//JEpU6ZQq1Ytvb/V9+/fZ/ny5QCcPXsWgJ9++glI+MTcu3dvAObNm8emTZto27Ytjo6OPH78mMWLF+Pv78/y5cv1fscGDBjAX3/9xZAhQ7h16xaWIaY83baBuJBnOHT+IUXPwdTeiWdrftBbWgiQu37PJOfWdk7bbq8VK1akT58+/PHHH7x8+ZKGDRty+vRpli1bRocOHVJcT+BtPoqegalTpxIREcEff/yhlwgA5M2bl4ULFxIeHq7bCjaxmMONGzfo2rUruXLloqJLEV7s+wMlLumM6FdXD/J4yXD8p3XkwaxuBG7+jbhQ/Qz0ycqxBPw1mJjn/jz55xv8p3XiodenhJxcj4laRVCessmO9cfFxVGsWDG+/vrrJEtsVCoVQ4cOZeXKlZQrVw5zc3N27dqV1pdLZCKLFy8mJibmrZNJs5o5c+YQGhrKuHHj0tTOgAEDiI2NZfHixQaKTGQ2gwcPxs7OjkmTJvG///2PgwcP8ueff9KtWzc2bdqkN2R27949xo0bx7hx4zh16hSA7vtFixbpzqtbty4ODg66N/mZM2dSqlQp9u3bR8+e+m/QFhYWHDhwgB49erB48WIO/D0DRaXCoct4LIpXS9FzyFGkPHma9Sf86kFeHl2JiUVOHLpMwMzBOcm5HSonnWyYWn/99RcTJ07kzJkzjBgxggMHDvDNN9+wevXqNLf9UexaWKhQIczMzLh3795bz3F2diYuLo4HDx7odoNydXWlaNGitGjRgh8Xb+LZ+X1YlWtM3rajdNeFHF/DyyMrsCxTjxxFXImPCCHs3FZUZhYU7DsbdY6ErX2frBybMH6kNsGyZG1MbQsTcfMYUfcv49BlAqVrNODgVw25d+8eXbt25erVq5QsWZKYmBjKlSvH1q1bad26NZs2bdLdW6VSUaZMGZ4/f87QoUPJmzcvderUoVKlSun1UooMFB8fT4kSJahfvz5///23scMxmBkzZjB69GhOnz5NtWop+6OanE8//ZSjR49y+/Zt2UDrI5e4a+HSpUuNGkfvRac4fjco1avI3sVEraJOMTuWf1HTYG2mRrbZtTAkJISAgADat2//zvMqVKjAli1b9DazcHZ2ZvPmzbyKjmPaw6JYY86r89vJVbMjZg7OxIU84+XRleRu0BubOv+N51qWqs3jJcMJO79D73j8q2Ds2nyFdfkmAFhXbM6j+Z/z6vIe/ItXIzJWy4kTJ7h48SKHDx+mXr16umsXLlzIwIEDOX78OHXq1NEdv3nzJleuXJF67R+hbdu24efnx7p164wdikENGzaMv//+mwEDBnD69OkPfiP39PRk+fLlbNu27b2/30IYwmQPV5rNPGzQZECjVjHZw9Vg7aWXLD9MkPjmnjPnu8sAJz4eGvrf2s8hQ4YAcD8oHAXIVbUNAJF3EsakIm4eB0XBskw94iNCdF8mVnkwzVOQKP/LevdQmVlgVe6/cRuViSlmBUoS9/IpCgkFJ9atW0eZMmUoXbo0z58/1301aZKQQBw8eFCvzYYNG0oi8JGaPXs2derUSdOn58xIo9GwcOFCLly4oFs58yFkmWH2UbRoUTp06GDsMChia8nEdmnflvt1P7Yrly4VaQ0ty/cMJL7Jv/6JPznJJQ0uLi7Af4UgNLkLgEpNXEjC2v/YFwGAQsDCL5Nv9I3ZoiY57ZIsDVPnsCYm0E93H19fX65fv55kbkOiZ8/0C104OycdexJZ35UrVzh48KBBxvoyo5o1azJgwAC+//57OnXq9MFVFYcNG0aPHj24evUq5cuXN3CUIrMoWrQoRYsWNXYYAHSr7sjzV9EGqTczxq0Un1RPXfEfY8nyyYCNjQ0FChTQlZd8m8uXL1OoUKFkx0x0hSDeXOOtaAEVDl0nJHnjB1Cb6s/qV6ne0tHy/9MyzDRqtFotrq6uuuUgb0osjpFISgx/nObMmUOhQoXo2LGjsUNJN7/88gsbN25kxIgRHzwU0qlTJwoUKICXlxcLFiwwcIRCJG9oYxfyWpszfosPcVolVcMGJmoVGrWKH9uVyzKJAHwEyQBAmzZt+PPPPzl27JjeOHyio0eP4ufnl2TGtq+vL87OzrqCE7EvAkDRorHJB4AmTwFAQZM7P6a2aasXryKh4ETx4sW5dOkSTZs2zbIFZkTaBAUFsWLFCsaNG/dRl5POnTs3M2fOpGfPnuzYsUO3Tjo1EpcZ/vLLL7LMUGSobtUdqVs873s3q0uU+HidYnbptlldesrycwYAxowZg4WFBQMGDCAoSH+byODgYAYOHIilpSVjxozReyxxPDOx4ETouW0AWBRLKExhWbIOqNS8PPZPkqpqiqIQH5m09vTbONpZYmWuoWvXrjx69Ei369TrIiMjCQ//8I0sRNbw559/oigKX375luGnj0j37t1p1qwZQ4YMISIi4oPa+PLLL4mPj9dbQiZERihia8nyL2qyd0QDetd0wsnOkjc/wqkAJztLetd0Yt/IBiz/omaWSwTgI+kZcHFxYdmyZfTs2RNXV1e++OILnJ2d8fPzY9GiRTx//pxVq1ZRvHhxvevu3btHu3btaNmyJS937OTV+e1Ylm2IWb6EYhemeQqQu0FvXh5extOQZ1iUrIXazIK4l0+JuHUC60otsan5/m5elQoal3QAoHfv3qxdu5aBAwdy8OBB6tatS3x8PDdu3GDt2rXs3r37o5tQJv4TFxen21I1b968xg4n3alUKubPn4+rqys//fQTkydPTnUb+fLl0+1mOHLkSFlmKDKcS76cTGhXjgmUIzw6Dr+gcGLitJhp1BS1s0pTZcHMIus/g//XpUsXSpcuzS+//KJLAOzs7GjcuDHffvttspOP1qxZww8//MDYsWNRm5iQs0ob8jT5XO8cm9pdMLUtROiZTYQcWwWASa68WDhXxtIlZetGFQV61UoYO1Kr1WzatImZM2fy999/4+3tjaWlJcWKFWP48OGULFkyja+EyMy8vb15+PBhltudMC1cXFz49ttvmTRpEj179qRcudTP1k5cZrh169ZMMetcZF9W5hrKFfyw6pqZ2UdRdCi1EosOBQYG6n06+xgLTojMpX79+piYmHDo0CFjh5KhoqOjqVChAg4ODhw+fPiDdt6sU6cOFhYW7N+/Px0iFOLjlNL3749izoChTPZwRaM27KS+rFJwQqS/8+fPc+zYMYYPH27sUDKcubk5v//+O8eOHWPZsmUf1MawYcM4cOAAV69eNXB0QghJBl6TnQtOiPQ3Z84cnJycaNeunbFDMYomTZrQq1cvxowZw/Pnqd8UrFOnThQsWFB2MxQiHUgy8IZu1R0Z7WaYcfusVHBCpK+nT5+yatUqhg4dmq0nwE2bNo34+Hi+/vrrVF9ramrKwIEDWb58OcHBwekQnRDZV7ZMBiZMmICiKG+dzT20sQu/dnTFXKPGJJXDBiZqFeYaNb91dGVI4xKGCFd8BP744w80Gg1ffPGFsUMxqnz58vHbb7+xZMkSjhw5kurrZZmhEOkjW04gTKkHwRGpLjhRv0TeLFlwQqSfmJgYnJyc6NChA7///ruxwzE6rVZLvXr1ePnyJRcvXtTbYz4l+vTpw+HDh7lz50627mURIiVkAqEBZKeCEyL9rF+/nidPnuDp6WnsUDIFtVrNggULuHXrFtOmTUv19cOGDeP+/fts3bo1HaITInuSnoFU+lgLToj0U7NmTWxsbNizZ4+xQ8lUxowZg5eXFz4+PhQrVixV19atWxczM7Mku3wKIfRJz0A6SSw4UdkxD+UK2kgiIN7p1KlTnD59OlsVGUqpCRMm4ODgwJAhQ5KU+34fT09PDh06xJUrV9IpOiGyF0kGhEhHs2fPpnjx4h+0Sc/HzsrKirlz57Jr1y7Wr1+fqmtlmaEQhiXJgBDpJCAggHXr1uHp6flBFfeyg3bt2tGhQweGDx9OSEhIiq8zNTVl0KBBrFixIsnmZEKI1JO/UEKkk99//50cOXLQt29fY4eSqc2ePZvQ0FDGjRuXqutkmaEQhiPJgBDpICoqioULF9K3b99sP+n2fRwdHZk4cSJeXl6cPXs2xdc5ODjQvXt35s2bR1xcXDpGKMTHT5IBIdLB6tWrCQwMlOWEKTR8+HAqVKjAgAEDiI+PT/F1np6e+Pv7yzJDIdJIkgEhDExRFObMmUOrVq1wcXExdjhZgkajYcGCBVy4cIF58+al+LqqVatSp04d5syZk47RCfHxk2RACAM7duwYFy5cyJa7E6ZFrVq1GDBgAN9//z2PHj1K8XXDhg3j0KFDXL58OR2jE+LjJsmAEAY2Z84cSpcuTfPmzY0dSpYzefJkLCwsGDFiRIqv6dixoywzFCKNJBkQwoD8/f3x9vZm2LBhqFSp2+RKQJ48eZg5cybr169nx44dKbrG1NSUwYMHyzJDIdJAkgEhDGj+/PlYW1vTu3dvY4eSZXXv3p1mzZoxdOhQIiIiUnTNl19+iaIossxQiA8kyYAQBhIREcEff/xBv379sLa2NnY4WZZKpWL+/PkEBATw008/pegae3t7WWYoRBpIMiCEgaxcuZKQkBCGDBli7FCyPBcXF7755humTp2Kj49Piq5JXGa4ZcuWdI5OiI+P7FoohAEoioKrqysuLi54e3sbO5yPQnR0NBUqVCBfvnwcOnQoRSWd69Wrh0aj4dChQ+kfoBBZgOxaKEQGOnjwID4+PrI7oQGZm5vz+++/c/ToUZYtW5aia4YNG8bhw4e5dOlSOkcnxMdFegaEMID27dtz7949Ll26JKsIDKx3797s3LmTGzdukDdv3neeGxsbi7OzMy1btuSvv/7KoAiFyLykZ0CIDHL37l22bt0qywnTybRp04iPj+frr79+77mJywxXrlwpywyFSAVJBoRIIy8vL/LkyUPPnj2NHcpHKV++fPz2228sWbKEI0eOvPf8/v37oyiK9AwIkQqSDAiRBq9evWLRokV8+eWXWFhYGDucj1a/fv2oXbs2AwcOJCYm5p3n2tvb06NHD1lmKEQqSDIgRBosW7aM8PBwBg8ebOxQPmpqtZoFCxZw69Ytpk2b9t7zPT09efDgAZs3b86A6ITI+mQCoRAfSKvVUqZMGSpWrMjatWuNHU62MGbMGLy8vPDx8aFYsWLvPLd+/fqo1WoOHz6cQdEJkfnIBEIh0tmePXu4deuW7E6YgcaPH4+9vT1DhgzhfZ9jhg0bxpEjR2SZoRApIMmAEB9o9uzZVKlShTp16hg7lGzD2toaLy8vdu3axfr16995bocOHShcuLDsZihECkgyIMQHuHnzJrt27WL48OGynDCDtWvXjvbt2zN8+HBCQkLeet7rywyfP3+egREKkfVIMiDEB5g7dy4ODg588sknxg4lW5ozZw6hoaGMGzfunefJMkMhUkaSASFSKSQkhKVLlzJw4EDMzc2NHU625OjoyMSJE5k3bx5nz55963l58+aVZYZCpIAkA0Kk0uLFi4mJiWHgwIHGDiVbGz58OK6urgwcOJD4+Pi3nufp6cnDhw/ZtGlTxgUnRBYjyYAQqRAfH4+Xlxddu3alQIECxg4nW9NoNCxYsIDz588zf/78t55XuXJl6tevz5w5czIwOiGyFkkGhEiF7du3c/fuXdmdMJOoVasWAwYM4LvvvuPRo0dvPW/YsGEcPXqUixcvZlxwQmQhUnRIiFRo1qwZ4eHhnDhxwtihiP/34sULSpcuTcOGDd9a/CkuLg5nZ2fc3NxYtGhRBkcohPFI0SEhDOzq1avs379fegUymTx58jBz5kzWrVvHzp07kz1Ho9EwZMgQWWYoxFtIMiBECs2dO5cCBQrQqVMnY4ci3tC9e3eaNWvGkCFDiIiISPacfv36AfDnn39mZGhCZAmSDAiRAsHBwSxfvpzBgwdjZmZm7HDEG1QqFfPnzycgIICffvop2XPy5s1Lz549mT9/viwzFOINkgwIkQJ//fUX8fHxfPnll8YORbyFi4sL33zzDVOnTsXHxyfZc2SZoRDJkwmEQrxHXFwcxYoVo2nTpixZssTY4Yh3iI6OpkKFCuTLl49Dhw6hVif9vNOwYUMUReHIkSNGiFCIjCUTCIUwkM2bN/PgwQOZOJgFmJub8/vvv3P06FGWLVuW7DmJywwvXLiQwdEJkXlJz4AQ79GgQQMA+SSZhfTu3ZudO3dy48YN8ubNq/dYYk9Ps2bNWLx4sZEiFCJjSM+AEAZw4cIFjh49Kr0CWcy0adOIj4/n66+/TvKYRqNh8ODB/PPPPwQGBhohOiEyH0kGhHiHOXPmUKRIETp06GDsUEQq5MuXj99++40lS5Yk26PTr18/VCqVLDMU4v9JMiDEWzx79ox//vmHIUOGoNFojB2OSKV+/fpRq1YtBg4cSExMjN5jicsMf//9d2JjY40UoRCZhyQDQrzFH3/8gYmJCf379zd2KOIDqNVqFi5cyK1bt5g+fXqSx2WZoRD/kWRAiGTExsYyf/58evXqha2trbHDER+oQoUKjBw5kh9//JG7d+/qPVaxYkUaNmwouxkKgSQDQiRr/fr1PH78WCYOfgTGjx+Pvb09Q4YM4c3FU8OGDePYsWOcP3/eSNEJkTlIMiBEMubMmUOTJk0oX768sUMRaWRtbY2Xlxe7du1i/fr1eo+1a9eOIkWKMHfuXCNFJ0TmIMmAEG84ffo0J0+eZPjw4cYORRhIu3btaN++PcOHDyc0NFR3PHE3w1WrVskyQ5GtSTIgxBvmzJmDs7MzrVu3NnYowoDmzJlDaGgo33//vd5xWWYohCQDQuh5/Pgxa9euxdPTExMTE2OHIwzI0dGRiRMnMm/ePM6ePas7bmdnR69evZg/f74sMxTZliQDQrxmwYIFmJmZ0bdvX2OHItLB8OHDcXV1ZeDAgcTHx+uOe3p68ujRI7y9vY0YnRDGI8mAEP8vOjqaBQsW8Nlnn5E7d25jhyPSgUajYcGCBZw/f5758+frjleoUIFGjRrJMkORbUkyIMT/W7NmDc+ePcPT09PYoYh0VKtWLQYMGMB3333Ho0ePdMc9PT35999/OXfunBGjE8I4ZNdCIQBFUahWrRoODg7s3LnT2OGIdPbixQtKly5Nw4YNWbt2LZCwm2Hx4sVp3LgxS5cuNW6AQhiI7FooRCocP36c8+fPS5GhbCJPnjzMnDmTdevW6ZK/15cZPnv2zMgRCpGxJBkQApg9ezYlS5akRYsWxg5FZJDu3bvTrFkzhgwZQkREBJCwzNDExESWGYpsR5IBkS0FBwfzxRdfsGnTJvz8/Ni4cSOenp6o1fIrkV2oVCrmz59PQEAAP/30EwC2trayzFBkS/KXT2RLPj4+LF68GA8PDypUqIBGo6Fdu3bGDktkMBcXF7755humTp2Kj48PkDCRMCAggI0bNxo5OiEyjiQDIluysbHR/X9YWBjR0dGUKlUKT09P4uLijBiZyGhjx46lWLFiDBo0CEVRcHV1lWWGItuRZEBkS8nNqo2KimLx4sW8ePHCCBEJYzE3N2f+/PkcPXpUt4pg2LBhHD9+XJYZimxDkgGRLb2ZDJiYmFCoUCFOnjyJvb29kaISxtK0aVN69uzJmDFjeP78OW3btsXJyUm3m+HZs2c5cuSIkaMUIv1IMiCypdeTAZVKRdWqVTl//jyurq5GjEoY0/Tp04mPj+frr79Go9HQq1cvli9fTuXKlalevTo9evQwdohCpBuNsQMQwhg0Gg1qtRqtVsv/tXfvUVFd9wLHvzMMD0FABURNEF8R4iOJ7xejGB9IiETbUjVKgkkbXb0rSavVa4m5kqbNTRQlqxq9XmPUoIAajVrTGyIWdYQGSagvrCIKohJAxZFhgOExc/+gjJnwVAYfzO+zFmvJ2fucs4c1zvnN2b/9O7NmzWLLli04OTk97GGJh8jb25sPP/yQhQsXkpWVRWpqKiaTiVOnTgG10wlCtFcSDIh2TW+oJveWnspqIw4qJb08XHBxrH3b9+3bl9GjR7Nt2zYUCsVDHql4FIwePRoHBwdSUlLM2+qKtHbu3PlhDUuINifBgGh3Lhbq2JGWR/KFIvKKy/hxvW0F0LOLMxP9uvKV5nue8nZ9WMMUj5iVK1cSGRlJYxXaJRgQ7ZkEA6LduFpcRuSXZ9Bk38ROqaDGWP9D3QRcKS4jNu0KW/+Ri7qfJx/MHIxPF+cHP2DxSElPT7d4rPFPSTAg2jNJIBTtQkJ6HpNjjpJ6+RZAg4HAj9W1p16+xeSYoySk57X5GMWjbefOnWzevBl3d3fs7OzM2+umkCorKx/W0IRocxIMiAciKiqqzebl1yVfZNneMxiqjc0GAT9VYzRhqDaybO8Z1iVfbJPxNSYiIoKOHTs+0HOKximVSl577TWys7N55ZVXzNv9/PxQKpUW0wd6QzWZ+Xf4Z95tMvPvoDdIoSrxeJNgQNy3rVu3olAo+O677yy237lzh5EjR+Lk5MTXX3/d6P4ffPAB+/btq7c9NTWVqKgotFpts2NISM8j+pusFo23YMcy8j/9TYNt1dpC3ny+P/PefqdFxxLtl6enJ5999hnHjh3Dzc0No9GIVqvlv9dvJepAJhNWJTMoKpGQtceZuSGVkLXHGRSVyIRVyUQdyORioe5hvwQh7pkEA8KqSkpKmDp1KqdPn+bLL79k2rRpACxfvpzy8nKLvk0FA++9916zwcDV4jJWHMi01tABSMws5GpxmVWPKR5ParUarVZL4vHv+M2uc7ywLpXYtCtc+UlSKljmokz5+Bjhm9PkfSQeKxIMCKvR6XQEBQVx8uRJ9uzZQ3BwsLlNpVJZfR1/5JdnqL7HaYHmGE0mIr88Y9VjisfXzu+uEvSX45KLIto9CQaEVZSWljJt2jQyMjLYs2cPISEhFu0/zRlQKBTo9XrzGn+FQkFERARRUVEsWbIEgN69e5vbcnNzmTBhAs8++yxQu3xQk33T/OF7/X8XULjz3Va/DqMJNNk3yS7SUVxczO9//3sGDx5Mx44dcXNzIzg42FyEBmrXoHt6erJo0aK7xzAa6dSpE3Z2dhZ3Nz766CNUKhWlpaWNnv/kyZN4eXkRGBjYZD/R9h7XXBQh7ocsLRStptfrCQ4OJj09nS+++IIXX3yx2X1iY2P51a9+xciRI3njjTeA2iJALi4uZGVlER8fT0xMDJ6engB4eXkRHh7Or3/9a86ePcsXlxXm5YOGH7KoLr6O+9hZzZ7XZDJSU3an3nZjxd0Lr51SwfZv83ixRzn79u0jLCyM3r17U1hYyMaNG5kwYQLnzp2jR48eKBQKxo0bZ1G3/vTp09y5cwelUklKSoo5MNJoNAwZMqTRpMH09HSCgoIYPnw4+/fvp0OHDs2+HtE27iUXpTnR32Th1dGRWSN61msLDAwE4MiRI1Y5lxD3S4IB0Wqvvvoq+fn57N69m9DQ0BbtM2/ePBYuXEifPn2YN2+eRdvQoUOJj49nxowZ9OrVy7w9LCyMN998k+3bt/MPjyDztzX92WQU9k449x/b7Hmrb13j2l/mNtmnxmgiOauIPwSNJSsrC6Xy7g208PBw/P392bx5M+++W3snQq1Ws2zZMnQ6Ha6urmg0Gnx9ffH29kaj0RASEoLRaCQlJYX58+c3eM6UlBReeOEF1Go1e/bskdK3VpCTk8Pq1av55ptvuHbtGgC9evVi4sSJLFiwgGeeeabB/doiF+W/DmQytq+n1LMQjywJBkSrFRYW4uTkhI+PT5uex93dnZdeeom4uHiULweAQoHJWIP+vAbn/qNROjSfk2Dn7o1H8Jv1ttfob3Prr6vNv+fdKqMaOxz/HQjU1NSg1Wrp2LEjfn5+ZGRkmPuq1WpqampITU0lKCgIjUaDWq02BwMAZ8+eRavVolar6507OTmZ6dOnM3XqVBISEnBwcLjnv42wdPDgQWbNmoVKpWLu3Lk8++yzKJVKzp8/z969e9mwYQM5OTn4+vrW27ctclGqjbW5KLGvj7LqcYWwFgkGRKtt3LiRRYsWMW3aNDQaDX5+fm12rldeeYWdO3fifTUTp56DqMg9iVGvxWXgxBbtr7R3pEOv5+ptr9YWWvxuAi7f0JG0eyvr168nJyfHojqdh4eH+d9Dhw7F2dkZjUZjDgbee+89unXrxtq1a6moqDAHBQEBARbnqaioICQkhGHDhrFr1y5UKvkv2VqXLl1i9uzZ+Pr6cvjwYbp3727R/tFHH7F+/XqLOz516nJRrK3GaDLnovTrKiWwxaNHEghFqw0YMIC//e1vlJeXM2XKFK5evdpm5woKCsLDqyv6zGQA9JlHsHPpjFMDF/jW+p+Po1m0aBHjx49n+/btJCYmcujQIQYOHIjRaDT3s7e3Z9SoURw7dozs7GwKCgpQq9UEBARQVVVFWloaGo0Gf39/vLy8LM7h6OhISEgIaWlpTdZkEC23cuVK9Ho9W7ZsqRcIQO3KlrfeesviTtbf//531Go1A329uRozi6Iv3qfqZv33cWXBJQp3rSBvTRh5q39BYXwkhuvn6/cryqFgxzLyon/GtU9eRZuSQNmZJJ7ydiM3N7fJ8RsMBlasWEG/fv1wdHTEx8eHpUuXYjAY7v2PIUQLSTAgrGLkyJHs27ePoqIipkyZwo0bN5rdp7GKhE1VKrSzsyNkxi8ou5BCTUUpZRe/xXnAeBRKu0b3uV+H/+8AEydOZPPmzcyePZupU6cyefLkBusfqNVqTpw4QVJSEp6envj7+9OlSxcGDhyIRqNBo9Ewfvz4evspFAp27NjBpEmTCAsLk0QyKzh48CD9+vVj1KiW3ZJPSkoiKCiIoqIinpwUjuuIGRiu/4uC7Uss7hhV3rhCwY7/pKooB7dRP8d93GyqtYUUxP0BQ/4Fc79q3U0K4yKpupmH2+gw3Ia/hP7cEbTp+5sdi9FoJDQ0lOjoaKZPn87atWuZMWMGMTExzJrVfIKsEPdLggFhNZMmTSI+Pp7s7GymTZtGSUlJk/1dXFwavLC6uLgANFp0aMHrERgrSin+eh2myvIWTxHcCwXQwdG+3hPsdu/ezfXr1+v1V6vVGAwGPv74YwICAswBjVqtJjY2lvz8/AbzBQAcHBzYu3cvI0aMYPr06Zw4ccLqr8dWlJSUkJ+fz6BBg+q1abVabt68af6pK4K1ZMkSunTpwqEjGkzPhNIpYA7ec/6M0VCG9viOu/sfi8VkrMZ73ko6jZuN++hf4B2+CoWditvJW+6O4ds9GCtK8Z79JzoFzMFt1M/oNm8VNSW10w9lTZQujouLIykpicTERGJiYnjjjTdYu3Yt69atY//+/aSmplrrTyWEBQkGhFXNnDmTTZs2kZGRQWhoKBUVFY32HTZsGElJSaxZs4aEhATS0tLM2wHeeecdYmNjSUhIQK/Xm/cbO2oEzt16U3b+OPYePjh262f119HTw5nQ6dM5cuQI8+fPZ9OmTbz11lvmFRA/NWbMGFQqFRcuXLC46I8fP56srNolao0FAwAdOnTg4MGD+Pn5ERwczNmzZ63+mmxBXQDa0PLNwMBAvLy8zD+ffPIJP/zwAydPniQiIgKdydFcWdCha2+cej1H+aXaUtsmYw0Vuf/E+akx2HfqZj6mqmMXXAZMwHDtHEZDbcXB8svf4/iEPw7ed98ndh1ccRkYCMA1beOVCXfv3s3TTz+Nv7+/ReDy/PPPA7XJpkK0BQkGhNXNnz+f6Ohojh49SlhYGNXVDX8TWrNmDcOGDWP58uXMmTOHDRs2ADBixAjef/99Tp06RUREBHPmzKk37TA2aCYALoOsf1fATqlgYv+uREZGsnjxYhITE3n77bfJyMjgq6++anDVhIuLC0OGDAEskwTrAgAfH58GM9d/zM3NjcTERLp168aUKVPIzs624quyDa6utcl5DRVs2rhxI4cOHWL79u3mbVeuXAFqH0ZUWW206G/v4YOxvARjZQXGshJMVQbsuzxR77j2Hj5gMlJdUvserS4pQtW5gVyFf2+rqm58pcLFixfJzMy0CFq8vLzo378/AEVFRU2+fiHul6Qui/sWERFBREREg22LFy9m8eLF5t+joqKIioqy6OPn58fRo0cb3H/58uUsX7680XOP6teVJBS4DAhs8Xi7zf2w0TZVJ298lx0EajO/543uiaOjI9HR0URHR1v0bWxev6Hb+0888US9qYY6W7duZevWrRbbPDw8yMy07hp3W+Lu7k737t0bvLNSl0PQWAKfg+rBfDeyVzWeE2M0Ghk8eDBr1qxpsL2tl+8K2yXBgHjsmEwmDuzagbffEBw7e99zqdim2CkVjO3jIcu/HmMhISF8+umnnDhxgpEjRzbZt+5uzYULF5g11wUFmKcKqoqvoezghtLBCZPKHoW9I1XF9fNFqoqvgUKJyq12pYjKrSvVt3+o169u25OdGi881LdvX06dOsWkSZPa7JHfQjREpgnEY0Ov1xMfH8+CBQs4c+YMf353GSqldT8wVUoFH8wcbNVjigdr6dKlODs789prr1FYWFiv/cd3arp3785zzz3Htm3bqCovpee/KwRW3silIuefdOg7HACF0g6nXkMou/itxQqDGv1t9OeO4vjkAJSOtft26D0Uw/XzVBZevtuvXIc+8wgAzo6Nfwf75S9/yfXr19m0aVO9tvLycovcGSGsSe4MiMfGjRs3ePnll+nUqRORkZG8PjcMl/Q8lu213lMG/xg6UErGPuaeeuop4uLimDNnDn5+fuYKhCaTiZycHOLi4lAqlTz55JMArFq1iuDgYMaMGYPP6BBKLhdy57u/onR0xj3gZfNxO40PpyL3JAU7luI6JASUSkpPfo2puorOE++WmXYb/XP0mckUJizHddh0lPaO6E5/g8rdi8oKXZPf+MPDw9m1axcLFy4kOTmZcePGUVNTw/nz59m1axeJiYkMHz687f54wmYpTI1NaP5ISUkJ7u7u3LlzBzc3twcxLiFabF3yRas8VGbJVD/+Y6L1VyaIh+PSpUusXr2aQ4cOce3aNRQKBb6+vgQGBrJw4ULzEzABDh8+zIoVK/g+IwODUYGTzyA6B87H3tNyjr6y4BK3j27DcP1fYDLi0N2PzhPCcXziact+hZcpPrQRww9Z2Dm74zo0BIW9E7eTNlJQUIC3tzfQ8IOKqqqqiImJ4fPPPyc7OxtnZ2f69OlDaGgov/3tb+UzWNyTll6/JRgQ7UJCeh4rDmRSbTTdUw6BnVKBSqngj6EDG3yqnLA94ZvTSL18y+q5KA4nPif3+H5KS0uxs7N+kSwhGtLS67fkDIh2YfaIniT9bgJj+9Q+M8CumVyCuvaxfTxI+t0ECQSE2QczB7c6F8VYZVk6WFGho+D7QwQEBEggIB5JcmdAtDsXC3XsSMsjOauIvFtl/PgNrqC2oNDE/l2ZN7qnrBoQDUpoZS5K/mdv4tRzMPYePtTotdhnH0F7s5DDhw83WJZaiLYi0wRCAHpDNbm39FRWG3FQKenl4YJLE9ncQtRpTS7K7aPbKDufQo3uFvYqJSOHD2PFihVMnjzZyqMUomkSDAghRCtJLop43EnOgBBCtJLkoghbIfdLhRCiCT5dnIl9fZTkooh2TaYJhBDiHkkuinhctPT6Le9eIYS4Ry6OKgb2cH/YwxDCaiRnQAghhLBxEgwIIYQQNk6CASGEEMLGSTAghBBC2DgJBoQQQggbJ8GAEEIIYeMkGBBCCCFsnAQDQgghhI2TYEAIIYSwcRIMCCGEEDZOggEhhBDCxkkwIIQQQtg4CQaEEEIIGyfBgBBCCGHjJBgQQgghbJwEA0IIIYSNU7Wkk8lkAqCkpKRNByOEEEII66m7btddxxvTomBAp9MB4OPj08phCSGEEOJB0+l0uLu7N9quMDUXLgBGo5H8/HxcXV1RKBRWHaAQQggh2obJZEKn09GjRw+UysYzA1oUDAghhBCi/ZIEQiGEEMLGSTAghBBC2DgJBoQQQggbJ8GAEEIIYeMkGBBCCCFsnAQDQgghhI2TYEAIIYSwcf8P02jE8qUnC0UAAAAASUVORK5CYII=",
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Remove these image outputs, they make the notebook very large and difficult to load.

Comment on lines 666 to 667
" from google.cloud.spanner_admin_database_v1.types import spanner_database_admin\n",
" from google.cloud import spanner\n",
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

move these imports to the top of the notebook

" print(\"{} record(s) inserted.\".format(row_ct1))\n",
"\n",
"# print(insert_values) # This just prints the function object, remove this line\n",
"database.run_in_transaction(insert_values)"
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This database insert seems very complicated. Is there a simpler way to notate all of this?

"id": "3wQLk1Zy6rDr"
},
"source": [
"Now the graph nodes, relationship and embedding vectors are stored in the Spanner database. Let's try to query the database. We will ask the original question \"Who influced Larry Page?\" in the Vector database to get a semantic search result. Then we will get the node \"Lawrence Edward Page\" from the result."
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
"Now the graph nodes, relationship and embedding vectors are stored in the Spanner database. Let's try to query the database. We will ask the original question \"Who influced Larry Page?\" in the Vector database to get a semantic search result. Then we will get the node \"Lawrence Edward Page\" from the result."
"Now the graph nodes, relationship and embedding vectors are stored in the Spanner database. Let's try to query the database. We will ask the original question \"Who influenced Larry Page?\" in the Vector database to get a semantic search result. Then we will get the node \"Lawrence Edward Page\" from the result."

Comment on lines 1083 to 1087
"from google.cloud import spanner\n",
"\n",
"spanner_client = spanner.Client(GCP_PROJECT_ID)\n",
"instance = spanner_client.instance(SPANNER_INSTANCE_ID)\n",
"database = instance.database(SPANNER_DATABASE_ID)\n",
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A lot of this seems to be repeated in multiple cells. Can this be condensed?

Comment on lines 1134 to 1147
"from typing import List\n",
"\n",
"from langchain_core.callbacks import CallbackManagerForRetrieverRun\n",
"from langchain_core.documents import Document\n",
"from langchain_core.retrievers import BaseRetriever\n",
"from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel\n",
"from langchain_google_vertexai import VertexAIEmbeddings\n",
"from google.cloud import spanner\n",
"\n",
"class SpannerGraphRagRetriever(BaseRetriever):\n",
" gcp_project_id:str\n",
" spanner_instance_id:str\n",
" spanner_database_id:str\n",
" embedding_model_name:str\n",
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do you need to build a custom retriever for this? There should already be a Spanner Retriever in LangChain.

Also, would it be possible to just define these methods once in the Chain instead of running them multiple times in the notebook? It seems like there's lots of duplication.

"id": "WtIW59QW9F-z"
},
"source": [
"Give service-PROJECT_NUMBER@gcp-sa-aiplatform-re.iam.gserviceaccount.com Cloud Spanner Database User role or Vertex AI Reasoning Engine will not have access to the Spanner database"
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
"Give service-PROJECT_NUMBER@gcp-sa-aiplatform-re.iam.gserviceaccount.com Cloud Spanner Database User role or Vertex AI Reasoning Engine will not have access to the Spanner database"
"Give `service-PROJECT_NUMBER@gcp-sa-aiplatform-re.iam.gserviceaccount.com` Cloud Spanner Database User role or Vertex AI Reasoning Engine will not have access to the Spanner database"

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants