Skip to content

Commit

Permalink
feat(samples): add all feature values samples (#981)
Browse files Browse the repository at this point in the history
* feat(samples): add all feature values samples

* feat(samples): update all feature values samples

* feat(samples): update big query dependency in pom.xml

* feat(samples): code review changes

* feat(samples): updated feature values samples with close method call and list variable

* 🦉 Updates from OwlBot post-processor

See https://github.com/googleapis/repo-automation-bots/blob/main/packages/owl-bot/README.md

Co-authored-by: Owl Bot <gcf-owl-bot[bot]@users.noreply.github.com>
  • Loading branch information
sai-chaithu and gcf-owl-bot[bot] authored Aug 3, 2022
1 parent df8148a commit 09ae767
Show file tree
Hide file tree
Showing 7 changed files with 906 additions and 1 deletion.
6 changes: 5 additions & 1 deletion aiplatform/snippets/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,10 @@
<artifactId>proto-google-cloud-aiplatform-v1beta1</artifactId>
<version>0.17.0</version>
</dependency>

<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-bigquery</artifactId>
<version>2.13.6</version>
</dependency>
</dependencies>
</project>
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
/*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* Create features in bulk for an existing entity type. See
* https://cloud.google.com/vertex-ai/docs/featurestore/setup
* before running the code snippet
*/

package aiplatform;

// [START aiplatform_batch_create_features_sample]

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesRequest;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesResponse;
import com.google.cloud.aiplatform.v1.CreateFeatureRequest;
import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.Feature.ValueType;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class BatchCreateFeaturesSample {

public static void main(String[] args)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String featurestoreId = "YOUR_FEATURESTORE_ID";
String entityTypeId = "YOUR_ENTITY_TYPE_ID";
String location = "us-central1";
String endpoint = "us-central1-aiplatform.googleapis.com:443";
int timeout = 300;
batchCreateFeaturesSample(project, featurestoreId, entityTypeId, location, endpoint, timeout);
}

static void batchCreateFeaturesSample(
String project,
String featurestoreId,
String entityTypeId,
String location,
String endpoint,
int timeout)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
FeaturestoreServiceSettings featurestoreServiceSettings =
FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (FeaturestoreServiceClient featurestoreServiceClient =
FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

List<CreateFeatureRequest> createFeatureRequests = new ArrayList<>();

Feature titleFeature =
Feature.newBuilder()
.setDescription("The title of the movie")
.setValueType(ValueType.STRING)
.build();
Feature genresFeature =
Feature.newBuilder()
.setDescription("The genres of the movie")
.setValueType(ValueType.STRING)
.build();
Feature averageRatingFeature =
Feature.newBuilder()
.setDescription("The average rating for the movie, range is [1.0-5.0]")
.setValueType(ValueType.DOUBLE)
.build();

createFeatureRequests.add(
CreateFeatureRequest.newBuilder().setFeature(titleFeature).setFeatureId("title").build());

createFeatureRequests.add(
CreateFeatureRequest.newBuilder()
.setFeature(genresFeature)
.setFeatureId("genres")
.build());

createFeatureRequests.add(
CreateFeatureRequest.newBuilder()
.setFeature(averageRatingFeature)
.setFeatureId("average_rating")
.build());

BatchCreateFeaturesRequest batchCreateFeaturesRequest =
BatchCreateFeaturesRequest.newBuilder()
.setParent(
EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
.addAllRequests(createFeatureRequests)
.build();

OperationFuture<BatchCreateFeaturesResponse, BatchCreateFeaturesOperationMetadata>
batchCreateFeaturesFuture =
featurestoreServiceClient.batchCreateFeaturesAsync(batchCreateFeaturesRequest);
System.out.format(
"Operation name: %s%n", batchCreateFeaturesFuture.getInitialFuture().get().getName());
System.out.println("Waiting for operation to finish...");
BatchCreateFeaturesResponse batchCreateFeaturesResponse =
batchCreateFeaturesFuture.get(timeout, TimeUnit.SECONDS);
System.out.println("Batch Create Features Response");
System.out.println(batchCreateFeaturesResponse);
featurestoreServiceClient.close();
}
}
}
// [END aiplatform_batch_create_features_sample]
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
/*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* Batch read feature values from a featurestore, as determined by your
* read instances list file, to export data. See
* https://cloud.google.com/vertex-ai/docs/featurestore/setup before running
* the code snippet
*/

package aiplatform;

// [START aiplatform_batch_read_feature_values_sample]

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.BatchReadFeatureValuesOperationMetadata;
import com.google.cloud.aiplatform.v1.BatchReadFeatureValuesRequest;
import com.google.cloud.aiplatform.v1.BatchReadFeatureValuesRequest.EntityTypeSpec;
import com.google.cloud.aiplatform.v1.BatchReadFeatureValuesResponse;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.CsvSource;
import com.google.cloud.aiplatform.v1.FeatureSelector;
import com.google.cloud.aiplatform.v1.FeatureValueDestination;
import com.google.cloud.aiplatform.v1.FeaturestoreName;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.IdMatcher;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class BatchReadFeatureValuesSample {

public static void main(String[] args)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String featurestoreId = "YOUR_FEATURESTORE_ID";
String entityTypeId = "YOUR_ENTITY_TYPE_ID";
String inputCsvFile = "YOU_INPUT_CSV_FILE";
String destinationTableUri = "YOUR_DESTINATION_TABLE_URI";
List<String> featureSelectorIds = Arrays.asList("title", "genres", "average_rating");
String location = "us-central1";
String endpoint = "us-central1-aiplatform.googleapis.com:443";
int timeout = 300;
batchReadFeatureValuesSample(
project,
featurestoreId,
entityTypeId,
inputCsvFile,
destinationTableUri,
featureSelectorIds,
location,
endpoint,
timeout);
}

static void batchReadFeatureValuesSample(
String project,
String featurestoreId,
String entityTypeId,
String inputCsvFile,
String destinationTableUri,
List<String> featureSelectorIds,
String location,
String endpoint,
int timeout)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
FeaturestoreServiceSettings featurestoreServiceSettings =
FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (FeaturestoreServiceClient featurestoreServiceClient =
FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

List<EntityTypeSpec> entityTypeSpecs = new ArrayList<>();

FeatureSelector featureSelector =
FeatureSelector.newBuilder()
.setIdMatcher(IdMatcher.newBuilder().addAllIds(featureSelectorIds).build())
.build();
EntityTypeSpec entityTypeSpec =
EntityTypeSpec.newBuilder()
.setEntityTypeId(entityTypeId)
.setFeatureSelector(featureSelector)
.build();

entityTypeSpecs.add(entityTypeSpec);

BigQueryDestination bigQueryDestination =
BigQueryDestination.newBuilder().setOutputUri(destinationTableUri).build();
GcsSource gcsSource = GcsSource.newBuilder().addUris(inputCsvFile).build();
BatchReadFeatureValuesRequest batchReadFeatureValuesRequest =
BatchReadFeatureValuesRequest.newBuilder()
.setFeaturestore(FeaturestoreName.of(project, location, featurestoreId).toString())
.setCsvReadInstances(CsvSource.newBuilder().setGcsSource(gcsSource))
.setDestination(
FeatureValueDestination.newBuilder().setBigqueryDestination(bigQueryDestination))
.addAllEntityTypeSpecs(entityTypeSpecs)
.build();

OperationFuture<BatchReadFeatureValuesResponse, BatchReadFeatureValuesOperationMetadata>
batchReadFeatureValuesFuture =
featurestoreServiceClient.batchReadFeatureValuesAsync(batchReadFeatureValuesRequest);
System.out.format(
"Operation name: %s%n", batchReadFeatureValuesFuture.getInitialFuture().get().getName());
System.out.println("Waiting for operation to finish...");
BatchReadFeatureValuesResponse batchReadFeatureValuesResponse =
batchReadFeatureValuesFuture.get(timeout, TimeUnit.SECONDS);
System.out.println("Batch Read Feature Values Response");
System.out.println(batchReadFeatureValuesResponse);
featurestoreServiceClient.close();
}
}
}
// [END aiplatform_batch_read_feature_values_sample]
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
/*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* Bulk export feature values from a featurestore. See
* https://cloud.google.com/vertex-ai/docs/featurestore/setup before running
* the code snippet
*/

package aiplatform;

// [START aiplatform_export_feature_values_sample]

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.ExportFeatureValuesOperationMetadata;
import com.google.cloud.aiplatform.v1.ExportFeatureValuesRequest;
import com.google.cloud.aiplatform.v1.ExportFeatureValuesRequest.FullExport;
import com.google.cloud.aiplatform.v1.ExportFeatureValuesResponse;
import com.google.cloud.aiplatform.v1.FeatureSelector;
import com.google.cloud.aiplatform.v1.FeatureValueDestination;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.IdMatcher;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ExportFeatureValuesSample {

public static void main(String[] args)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String featurestoreId = "YOUR_FEATURESTORE_ID";
String entityTypeId = "YOUR_ENTITY_TYPE_ID";
String destinationTableUri = "YOUR_DESTINATION_TABLE_URI";
List<String> featureSelectorIds = Arrays.asList("title", "genres", "average_rating");
String location = "us-central1";
String endpoint = "us-central1-aiplatform.googleapis.com:443";
int timeout = 300;
exportFeatureValuesSample(
project,
featurestoreId,
entityTypeId,
destinationTableUri,
featureSelectorIds,
location,
endpoint,
timeout);
}

static void exportFeatureValuesSample(
String project,
String featurestoreId,
String entityTypeId,
String destinationTableUri,
List<String> featureSelectorIds,
String location,
String endpoint,
int timeout)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
FeaturestoreServiceSettings featurestoreServiceSettings =
FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (FeaturestoreServiceClient featurestoreServiceClient =
FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

FeatureSelector featureSelector =
FeatureSelector.newBuilder()
.setIdMatcher(IdMatcher.newBuilder().addAllIds(featureSelectorIds).build())
.build();

ExportFeatureValuesRequest exportFeatureValuesRequest =
ExportFeatureValuesRequest.newBuilder()
.setEntityType(
EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
.setDestination(
FeatureValueDestination.newBuilder()
.setBigqueryDestination(
BigQueryDestination.newBuilder().setOutputUri(destinationTableUri)))
.setFeatureSelector(featureSelector)
.setFullExport(FullExport.newBuilder())
.build();

OperationFuture<ExportFeatureValuesResponse, ExportFeatureValuesOperationMetadata>
exportFeatureValuesFuture =
featurestoreServiceClient.exportFeatureValuesAsync(exportFeatureValuesRequest);
System.out.format(
"Operation name: %s%n", exportFeatureValuesFuture.getInitialFuture().get().getName());
System.out.println("Waiting for operation to finish...");
ExportFeatureValuesResponse exportFeatureValuesResponse =
exportFeatureValuesFuture.get(timeout, TimeUnit.SECONDS);
System.out.println("Export Feature Values Response");
System.out.println(exportFeatureValuesResponse);
featurestoreServiceClient.close();
}
}
}
// [END aiplatform_export_feature_values_sample]
Loading

0 comments on commit 09ae767

Please sign in to comment.