Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added two samples for "OCR with PDF/TIFF as source files" #2034

Merged
merged 17 commits into from
Mar 12, 2019
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 107 additions & 0 deletions vision/cloud-client/detect/beta_snippets.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,8 @@
python beta_snippets.py object-localization-uri gs://...
python beta_snippets.py handwritten-ocr INPUT_IMAGE
python beta_snippets.py handwritten-ocr-uri gs://...
python beta_snippets.py doc-features INPUT_PDF
python beta_snippets.py doc-features_uri gs://...


For more information, the documentation at
Expand Down Expand Up @@ -174,6 +176,99 @@ def detect_handwritten_ocr_uri(uri):
# [END vision_handwritten_ocr_gcs_beta]


# [START vision_fulltext_detection_pdf_beta]
def detect_document_features(path):
"""Detects document features in a PDF/TIFF/GIF file.
happyhuman marked this conversation as resolved.
Show resolved Hide resolved

Args:
path: The path to the local file.
"""
from google.cloud import vision_v1p4beta1 as vision
client = vision.ImageAnnotatorClient()

with open(path, 'rb') as pdf_file:
content = pdf_file.read()

# Other supported mime_types: image/tiff' or 'image/gif'
mime_type = 'application/pdf'
input_config = vision.types.InputConfig(
content=content, mime_type=mime_type)
happyhuman marked this conversation as resolved.
Show resolved Hide resolved

feature = vision.types.Feature(
type=vision.enums.Feature.Type.DOCUMENT_TEXT_DETECTION)
# Annotate the first two pages and the last one (max 5 pages)
# First page starts at 1, and not 0. Last page is -1.
pages = [1, 2, -1]
happyhuman marked this conversation as resolved.
Show resolved Hide resolved

request = vision.types.AnnotateFileRequest(
input_config=input_config,
features=[feature],
pages=pages)

response = client.batch_annotate_files(requests=[request])

for image_response in response.responses[0].responses:
for page in image_response.full_text_annotation.pages:
for block in page.blocks:
print('\nBlock confidence: {}\n'.format(block.confidence))
for par in block.paragraphs:
print('\tParagraph confidence: {}'.format(par.confidence))
for word in par.words:
symbol_texts = [symbol.text for symbol in word.symbols]
word_text = ''.join(symbol_texts)
print('\t\tWord text: {} (confidence: {})'.format(
word_text, word.confidence))
for symbol in word.symbols:
print('\t\t\tSymbol: {} (confidence: {})'.format(
symbol.text, symbol.confidence))
# [END vision_fulltext_detection_pdf_beta]


# [START vision_fulltext_detection_pdf_gcs_beta]
def detect_document_features_uri(gcs_uri):
"""Detects document features in a PDF/TIFF/GIF file.

Args:
uri: The path to the file in Google Cloud Storage (gs://...)
"""
from google.cloud import vision_v1p4beta1 as vision
client = vision.ImageAnnotatorClient()

# Other supported mime_types: image/tiff' or 'image/gif'
mime_type = 'application/pdf'
input_config = vision.types.InputConfig(
gcs_source=vision.types.GcsSource(uri=gcs_uri), mime_type=mime_type)

feature = vision.types.Feature(
type=vision.enums.Feature.Type.DOCUMENT_TEXT_DETECTION)
# Annotate the first two pages and the last one (max 5 pages)
# First page starts at 1, and not 0. Last page is -1.
pages = [1, 2, -1]

request = vision.types.AnnotateFileRequest(
input_config=input_config,
features=[feature],
pages=pages)

response = client.batch_annotate_files(requests=[request])

for image_response in response.responses[0].responses:
for page in image_response.full_text_annotation.pages:
for block in page.blocks:
print('\nBlock confidence: {}\n'.format(block.confidence))
for par in block.paragraphs:
print('\tParagraph confidence: {}'.format(par.confidence))
for word in par.words:
symbol_texts = [symbol.text for symbol in word.symbols]
word_text = ''.join(symbol_texts)
print('\t\tWord text: {} (confidence: {})'.format(
word_text, word.confidence))
for symbol in word.symbols:
print('\t\t\tSymbol: {} (confidence: {})'.format(
symbol.text, symbol.confidence))
# [END vision_fulltext_detection_pdf_gcs_beta]


if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=__doc__,
Expand All @@ -196,15 +291,27 @@ def detect_handwritten_ocr_uri(uri):
'handwritten-ocr-uri', help=detect_handwritten_ocr_uri.__doc__)
handwritten_uri_parser.add_argument('uri')

doc_features_parser = subparsers.add_parser(
'doc-features', help=detect_document_features.__doc__)
doc_features_parser.add_argument('path')

doc_features_uri_parser = subparsers.add_parser(
'doc-features-uri', help=detect_document_features_uri.__doc__)
doc_features_uri_parser.add_argument('uri')

args = parser.parse_args()

if 'uri' in args.command:
if 'object-localization-uri' in args.command:
localize_objects_uri(args.uri)
elif 'handwritten-ocr-uri' in args.command:
detect_handwritten_ocr_uri(args.uri)
elif 'doc-features' in args.command:
detect_handwritten_ocr_uri(args.uri)
else:
if 'object-localization' in args.command:
localize_objects(args.path)
elif 'handwritten-ocr' in args.command:
detect_handwritten_ocr(args.path)
elif 'doc-features' in args.command:
detect_handwritten_ocr(args.path)
21 changes: 19 additions & 2 deletions vision/cloud-client/detect/beta_snippets_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
import beta_snippets

RESOURCES = os.path.join(os.path.dirname(__file__), 'resources')
GCS_ROOT = 'gs://cloud-samples-data/vision/'


def test_localize_objects(capsys):
Expand All @@ -28,7 +29,7 @@ def test_localize_objects(capsys):


def test_localize_objects_uri(capsys):
uri = 'gs://cloud-samples-data/vision/puppies.jpg'
uri = GCS_ROOT + 'puppies.jpg'

beta_snippets.localize_objects_uri(uri)

Expand All @@ -46,9 +47,25 @@ def test_handwritten_ocr(capsys):


def test_handwritten_ocr_uri(capsys):
uri = 'gs://cloud-samples-data/vision/handwritten.jpg'
uri = GCS_ROOT + 'handwritten.jpg'

beta_snippets.detect_handwritten_ocr_uri(uri)

out, _ = capsys.readouterr()
assert 'Cloud Vision API' in out


def test_detect_pdf_document(capsys):
file_name = os.path.join(RESOURCES, 'kafka.pdf')
happyhuman marked this conversation as resolved.
Show resolved Hide resolved
beta_snippets.detect_document_features(file_name)
out, _ = capsys.readouterr()
assert 'Symbol' in out
assert 'Word text' in out
happyhuman marked this conversation as resolved.
Show resolved Hide resolved


def test_detect_pdf_document_from_gcs(capsys):
gcs_uri = GCS_ROOT + 'document_understanding/kafka.pdf'
beta_snippets.detect_document_features_uri(gcs_uri)
out, _ = capsys.readouterr()
assert 'Symbol' in out
assert 'Word text' in out
Binary file added vision/cloud-client/detect/resources/kafka.pdf
Binary file not shown.