Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding search snippets #298

Merged
merged 1 commit into from
Apr 28, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
287 changes: 287 additions & 0 deletions appengine/search/snippets/snippets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,287 @@
# Copyright 2016 Google Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from datetime import datetime

from google.appengine.api import search


def simple_search(index):
index.search('rose water')


def search_date(index):
index.search('1776-07-04')


def search_terms(index):
# search for documents with pianos that cost less than $5000
index.search("product = piano AND price < 5000")


def create_document():
document = search.Document(
# Setting the doc_id is optional. If omitted, the search service will
# create an identifier.
doc_id='PA6-5000',
fields=[
search.TextField(name='customer', value='Joe Jackson'),
search.HtmlField(
name='comment', value='this is <em>marked up</em> text'),
search.NumberField(name='number_of_visits', value=7),
search.DateField(name='last_visit', value=datetime.now()),
search.DateField(
name='birthday', value=datetime(year=1960, month=6, day=19)),
search.GeoField(
name='home_location', value=search.GeoPoint(37.619, -122.37))
])
return document


def add_document_to_index(document):
index = search.Index('products')
index.put(document)


def add_document_and_get_doc_id(documents):
index = search.Index('products')
results = index.put(documents)
document_ids = [document.id for document in results]
return document_ids


def get_document_by_id():
index = search.Index('products')

# Get a single document by ID.
document = index.get("AZ125")

# Get a range of documents starting with a given ID.
documents = index.get_range(start_id="AZ125", limit=100)

return document, documents


def query_index():
index = search.Index('products')
query_string = 'product: piano AND price < 5000'

results = index.search(query_string)

for scored_document in results:
print(scored_document)


def delete_all_in_index(index):
# index.get_range by returns up to 100 documents at a time, so we must
# loop until we've deleted all items.
while True:
# Use ids_only to get the list of document IDs in the index without
# the overhead of getting the entire document.
document_ids = [
document.doc_id
for document
in index.get_range(ids_only=True)]

# If no IDs were returned, we've deleted everything.
if not document_ids:
break

# Delete the documents for the given IDs
index.delete(document_ids)


def async_query(index):
futures = [index.search_async('foo'), index.search_async('bar')]
results = [future.get_result() for future in futures]
return results


def query_options():
index = search.Index('products')
query_string = "product: piano AND price < 5000"

# Create sort options to sory on price and brand.
sort_price = search.SortExpression(
expression='price',
direction=search.SortExpression.DESCENDING,
default_value=0)
sort_brand = search.SortExpression(
expression='brand',
direction=search.SortExpression.DESCENDING,
default_value="")
sort_options = search.SortOptions(expressions=[sort_price, sort_brand])

# Create field expressions to add new fields to the scored documents.
price_per_note_expression = search.FieldExpression(
name='price_per_note', expression='price/88')
ivory_expression = search.FieldExpression(
name='ivory', expression='snippet("ivory", summary, 120)')

# Create query options using the sort options and expressions created
# above.
query_options = search.QueryOptions(
limit=25,
returned_fields=['model', 'price', 'description'],
returned_expressions=[price_per_note_expression, ivory_expression],
sort_options=sort_options)

# Build the Query and run the search
query = search.Query(query_string=query_string, options=query_options)
results = index.search(query)
for scored_document in results:
print(scored_document)


def query_results(index, query_string):
result = index.search(query_string)
total_matches = result.number_found
list_of_docs = result.results
number_of_docs_returned = len(list_of_docs)
return total_matches, list_of_docs, number_of_docs_returned


def query_offset(index, query_string):
offset = 0

while True:
# Build the query using the current offset.
options = search.QueryOptions(offset=offset)
query = search.Query(query_string=query_string, options=options)

# Get the results
results = index.search(query)

number_retrieved = len(results.results)
if number_retrieved == 0:
break

# Add the number of documents found to the offset, so that the next
# iteration will grab the next page of documents.
offset += number_retrieved

# Process the matched documents
for document in results:
print(document)


def query_cursor(index, query_string):
cursor = search.Cursor()

while cursor:
# Build the query using the cursor.
options = search.QueryOptions(cursor=cursor)
query = search.Query(query_string=query_string, options=options)

# Get the results and the next cursor
results = index.search(query)
cursor = results.cursor

for document in results:
print(document)


def query_per_document_cursor(index, query_string):
cursor = search.Cursor(per_result=True)

# Build the query using the cursor.
options = search.QueryOptions(cursor=cursor)
query = search.Query(query_string=query_string, options=options)

# Get the results.
results = index.search(query)

document_cursor = None
for document in results:
# discover some document of interest and grab its cursor, for this
# sample we'll just use the first document.
document_cursor = document.cursor
break

# Start the next search from the document of interest.
if document_cursor is None:
return

options = search.QueryOptions(cursor=document_cursor)
query = search.Query(query_string=query_string, options=options)
results = index.search(query)

for document in results:
print(document)


def saving_and_restoring_cursor(cursor):
# Convert the cursor to a web-safe string.
cursor_string = cursor.web_safe_string
# Restore the cursor from a web-safe string.
cursor = search.Cursor(web_safe_string=cursor_string)


def add_faceted_document(index):
document = search.Document(
doc_id='doc1',
fields=[
search.AtomField(name='name', value='x86')],
facets=[
search.AtomFacet(name='type', value='computer'),
search.NumberFacet(name='ram_size_gb', value=8)])

index.put(document)


def facet_discovery(index):
# Create the query and enable facet discovery.
query = search.Query('name:x86', enable_facet_discovery=True)
results = index.search(query)

for facet in results.facets:
print('facet {}.'.format(facet.name))
for value in facet.values:
print('{}: count={}, refinement_token={}'.format(
value.label, value.count, value.refinement_token))


def facet_by_name(index):
# Create the query and specify to only return the "type" and "ram_size_gb"
# facets.
query = search.Query('name:x86', return_facets=['type', 'ram_size_gb'])
results = index.search(query)

for facet in results.facets:
print('facet {}'.format(facet.name))
for value in facet.values:
print('{}: count={}, refinement_token={}'.format(
value.label, value.count, value.refinement_token))


def facet_by_name_and_value(index):
# Create the query and specify to return the "type" facet with values
# "computer" and "printer" and the "ram_size_gb" facet with value in the
# ranges [0,4), [4, 8), and [8, max].
query = search.Query(
'name:x86',
return_facets=[
search.FacetRequest('type', values=['computer', 'printer']),
search.FacetRequest('ram_size_gb', ranges=[
search.FacetRange(end=4),
search.FacetRange(start=4, end=8),
search.FacetRange(start=8)])
])

results = index.search(query)
for facet in results.facets:
print('facet {}'.format(facet.name))
for value in facet.values:
print('{}: count={}, refinement_token={}'.format(
value.label, value.count, value.refinement_token))
Loading