Skip to content

Graph-COM/SPE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

On the Expressivity of Stable Positional Encodings for Graphs

About

This is the official code for the paper: On the Expressivity of Stable Positional Encodings for Graphs.

Feel free to contact yinan8114@gmail.com if there is any question.

model

Introduction

In this work, we present SPE, a Laplacian-based graph positional encodings that are provably stable and expressive. The key insight is to perform a soft and learnable ``partition" of eigensubspaces in an eigenvalue dependent way, hereby achieving both stability (from the soft partition) and expressivity (from dependency on both eigenvalues and eigenvectors).

Our SPE method processes eigenvectors $V\in\mathbb{R}^{n\times d}$ and eigenvalues $\lambda\in\mathbb{R}^d$ into node positional encodings as follows: $$\text{SPE}(V, \lambda)=\rho(V\text{diag}{\phi_1(\lambda)}V^{T}, V\text{diag}{\phi_2(\lambda)}V^{T}, ..., V\text{diag}{\phi_m(\lambda)}V^{T}),$$ where $\rho:\mathbb{R}^{n\times n\times m}\to\mathbb{R}^{n\times p}$ and $\phi_i:\mathbb{R}^{d}\to\mathbb{R}^d$ are permutational equivariant functions w.r.t. $n\times n$ and $d$ axes respectively.

Code usage

Requirements

See requirements.txt for necessary python environment.

Dataset

Download all required datasets from here. The downloaded 'data' directory should be placed in the root direcotry. For example, './data/drugood', etc.

Reproduce experiments

To reproduce experiments on ZINC, cd to ./zinc and run

python runner.py --config_dirpath ../configs/zinc --config_name SPE_gine_gin_mlp_pe37.yaml --seed 0

To reproduce experiments on Alchemy, cd to ./alchemy and run

python --config_dirpath ../configs/alchemy --config_name SPE_gine_gin_mlp_pe12.yaml --seed 0

To reproduce experiments on DrugOOD, cd to ./drugood and run

python --config_dirpath ../configs/assay --config_name SPE_gine_gin_mlp_pe32_zeropsi.yaml --dataset assay --seed 0
python --config_dirpath ../configs/scaffold --config_name SPE_gine_gin_mlp_pe32_standard_dropout.yaml --dataset scaffold --seed 0
python --config_dirpath ../configs/scaffold --config_name SPE_gine_gin_mlp_pe32_standard_dropout.yaml --dataset size --seed 0

To reproduce substructures counting, cd to ./count and run

bash run.sh

About

Official code for SPE

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published