Skip to content

An opinionated Raft implementation powered by ØMQ

Notifications You must be signed in to change notification settings

Greenscreen23/node-zmq-raft

 
 

Repository files navigation

ØMQ Raft for nodejs

An opinionated implementation of Raft consensus algorithm powered by ØMQ.

The ØMQ part is in the core of this implementation and is not replaceable. State machine and some other parts (Log, Snapshot, Persistence) can be easily replaced though.

Components

                             +---------+
                             | Clients |
                             +---------+
                              /|\   /|\
                             / | \ / | \
                             +---------+
                             | Cluster |
                             +---------+
                                \ | /
                                 \|/
   +-------------+         +-------------+         +----------------+
   | Persistence | ======= | Raft * peer | ======= | Log + Snapshot |
   +-------------+         +-------------+         +----------------+
                                 / \
                                /   \
                               /     \
                              /       \
                             /         \
                            /           \
              +---------------+        +---------+
              | State machine | ------ | Clients |
              +---------------+        +---------+

Cluster

A group of well known and interconnected Raft peers.

Raft peer

A Raft peer is a server with a single ZMQ_ROUTER type socket for connections incoming from clients and its peers.

Persistence

ACID storage for the Raft's state:

  • the current term,
  • the last voted for,
  • the cluster configuration.

The RaftPersistence implementation is file based.

Log + Snapshot

ACID storage for:

  • log entries
  • a snapshot

FileLog and SnapshotFile implementations are file based.

See also: ACID.

State machine

The state machine is opaque to zmq-raft. Developers should implement it following StateMachineBase class api.

Clients

Clients can connect directly to any Raft peer server for:

  • Retrieving the cluster configuration (cluster discovery) with REQUEST_CONFIG RPC.
  • Retrieving the latest Raft state and log meta-data with REQUEST_LOG_INFO RPC.
  • Retrieving log entries with REQUEST_ENTRIES RPC.
  • Uploading state updates with REQUEST_UPDATE RPC.
  • Requesting cluster configuration changes with CONFIG_UPDATE RPC.
  • Custom requests provided by the state machine implementation.

Clients can also connect to the state machine directly depending on its implementation.

Client tools:

  • ZmqRaftPeerClient implements the single-peer client RPC protocol.
  • ZmqRaftClient implements an easy to use cluster-aware client, w/ peer failover, configuration auto-discovery etc.

Broadcasting State Machine (BSM)

This repository provides one implementation of the (state opaque) proxy state machine: BroadcastStateMachine.

BSM opens a ZMQ_PUB socket (when its peer is a Raft LEADER) and broadcasts applied log entries. Clients should query zmq-raft (with REQEUST_URL rpc) for the broadcasting PUB URL.

State machine changes will be fan out to any number of clients in real time.

When clients miss some entries they have to query zmq-raft for missing entries with REQUEST_ENTRIES RPC.

Client tools:

  • ZmqRaftPeerSub implements the single-peer BSM-based log entries stream reader on top of ZmqRaftPeerClient.
  • ZmqRaftSubscriber implements an easy to use cluster-aware BSM-based stream R/W client, w/ peer failover, configuration auto-discovery etc.

Hier

The protocol and some implementation details are presented here: PROTO and RAFT.

Public main classes:

Assuming:

const raft = require('zmq-raft');

Public intermediate common classes for building implementations:

Public base api classes for building implementations:

Helper utilities:

Usage

Building a Raft server requires to assemble component class instances for:

  • The Raft Persistence.
  • Log + snapshot.
  • The state machine.
  • The ZmqRaft server.

The simplest way is to use raft.server.builder that provides convenient defaults for all the necessary components.

This will create a single peer raft server listening on tcp://127.0.0.1:8047 with data stored in /tmp/raft directory:

const raft = require('zmq-raft');
raft.server.builder.build({data: {path: '/tmp/raft'}}).then(zmqRaft => {
  console.log('server alive and ready at: %s', zmqRaft.url);
});

The following example will create a raft server instance for the first peer in a cluster with the BroadcastStateMachine as its state machine:

raft.server.builder.build({
  id: "my1",
  secret: "",
  peers: [
    {id: "my1", url: "tcp://127.0.0.1:8047"},
    {id: "my2", url: "tcp://127.0.0.1:8147"},
    {id: "my3", url: "tcp://127.0.0.1:8247"}
  ],
  data: {
    path: "/path/to/raft/data"
  },
  router: {
    /* optional */
    bind: "tcp://*:8047"
  },
  broadcast: {
    /* required for broadcast state */
    url: "tcp://127.0.0.1:8048",
    /* optional */
    bind: "tcp://*:8048"
  }
}).then(zmqRaft => { /* ... */ });

To provide a custom state machine override factory.state function in builder.build options:

raft.server.builder.build({
  /* ... */
  factory: {
    state: (options) => new MyStateMachine(options);
  }
})

Provide your own listeners for events on the ZmqRaft instance instead of the default ones or disable them: The listeners are attached early just after ZmqRaft is being initialized.

raft.server.builder.build({
  /* ... */
  listeners: {
    error: (err) => {
      console.warn(err.stack);
    },
    state: (state, currentTerm) => {
      console.warn('state: %s term: %s', state, currentTerm);
    },
    close: null /* pass null to prevent initializing default listeners */
  }
})

Quick Start Guide.

For testing, to quickly setup the 0MQ Raft server with the Broadcasting State Machine use bin/zmq-raft.js:

  Usage: zmq-raft [options] [id]

  start zmq-raft cluster peer using provided config and optional id

  Options:

    -V, --version        output the version number
    -c, --config <file>  config file (default: config\default.hjson)
    -b, --bind <url>     router bind url
    -p, --pub <url>      broadcast state machine url
    -w, --www <url>      webmonitor url
    --ns [namespace]     raft config root namespace (default: raft)
    -h, --help           output usage information

e.g.:

export DEBUG=*
bin/zmq-raft.js -c config/example.hjson 1 &
bin/zmq-raft.js -c config/example.hjson 2 &
bin/zmq-raft.js -c config/example.hjson 3 &

You can direct your web browser to the webmonitor of any of the started peers:

To experiment with our cluster, let's spawn another terminal window and enter the cli with:

DEBUG=* npm run cli
  1. Now, from the cli, let's connect to the cluster with: .connect 127.0.0.1:8047.
  2. Let's subscribe to the BSM from another console with: .subscribe 127.0.0.1:8047.
  3. We can now flood the cluster with some updates using: .start some_data. You will see the updates being populated to the subscribers.
  4. To stop flooding, enter .stop.
  5. To read the whole log, type: .read.
  6. To get the current log information, type: .info.
  7. Type .help for more commands.

Cluster membership changes.

Adding new peers to the cluster.

  1. Let's start the new peer (preferably from a new terminal window):
DEBUG=* bin/zmq-raft.js -c config/example.hjson \
  --bind "tcp://*:8347" \
  --pub tcp://127.0.0.1:8348 \
  --www http://localhost:8350 4

We've added some arguments that are missing in the example.hjson file, so the peer can setup itself properly. On production, those options should've been added to the new peer's unique configuration file.

The important part is that the new peer MUST NOT be included in the peers collection of the configuration file.

The new peer 4 will connect itself to the cluster as a client and fetch the current log data. Then it changes its RAFT status to CLIENT and opens its ROUTER socket listening for messages.

  1. We will send a ConfigUpdate RPC to the cluster to update the peer membership for the new peer 4. From another terminal window:
DEBUG=* bin/zr-config.js -c config/example.hjson -a tcp://127.0.0.1:8347/4

In addition to a bunch of debug messages you should also see:

Requesting configuration change with ...some request id...:
  tcp://127.0.0.1:8047/1
  tcp://127.0.0.1:8147/2
  tcp://127.0.0.1:8247/3
  tcp://127.0.0.1:8347/4 (added)

Cluster joined configuration changed at index ...some index....
Cluster final configuration changed at index ...some index...:
  tcp://127.0.0.1:8047/1 (leader)
  tcp://127.0.0.1:8147/2
  tcp://127.0.0.1:8247/3
  tcp://127.0.0.1:8347/4

The (leader) may appear beside a different row.

If you check out the terminal where the new peer was started, you may notice that the peer has changed its status to the FOLLOWER.

The web monitor should have also picked up the membership change and there should appear a new row for the new peer: 4.

From the cli you may check the peers' status with the .peer command:

> .peers
Cluster peers:
1: tcp://127.0.0.1:8047
2: tcp://127.0.0.1:8147
3: tcp://127.0.0.1:8247
4: tcp://127.0.0.1:8347

The leader, if elected, will be highlighted.

You can further experiment with killing and restarting peers and observing the leader election process, e.g. while flooding the cluster with updates.

Removing peers from the cluster.

Now to remove the peer 4 from the cluster:

DEBUG=* bin/zr-config.js -c config/example.hjson -d tcp://127.0.0.1:8347/4

After the peer has been successfully removed, if it wasn't a leader during the configuration update it will most probably become a CANDIDATE. It happens when the removed peer isn't updated with the final Cnew configuration. This is ok, because cluster members will ignore voting requests from non-member peers. For more information on membership changes read here.

About

An opinionated Raft implementation powered by ØMQ

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • JavaScript 98.7%
  • HTML 1.3%