Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Initial parallel recipe logic helper #134

Merged
merged 1 commit into from
Sep 8, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
305 changes: 305 additions & 0 deletions src/main/java/gregtech/api/recipes/logic/ParallelLogic.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,305 @@
package gregtech.api.recipes.logic;

import gregtech.api.capability.IMultipleTankHandler;
import gregtech.api.recipes.*;
import net.minecraft.item.ItemStack;
import net.minecraftforge.fluids.FluidStack;
import net.minecraftforge.fluids.IFluidTank;
import net.minecraftforge.items.IItemHandlerModifiable;

import java.util.*;
import java.util.stream.IntStream;

public class ParallelLogic {

/**
* Attempts to multiply the passed {@link Recipe} from the items and fluids in the input inventories, up to a maximum limit.
* This is a rather strict implementation, and can create Recipes that will be too large for the available output inventory slots
* or to be combined into the available space in the output inventory
*
* @param inputs The Item Input inventory handler
* @param recipeMap The Recipe Map that the provided recipe is from
* @param fluidInputs The Fluid Input inventory handler
* @param recipe The Recipe to be multiplied
* @param parallelAmount The hard limit on the amount of parallel Recipes that can be performed
* @return A Recipe that has had all factors scaled by the number of parallel operations
*/
protected Recipe multiplyRecipe(Recipe recipe, RecipeMap<?> recipeMap, IItemHandlerModifiable inputs, IMultipleTankHandler fluidInputs, int parallelAmount) {

if(parallelAmount == 1) {
return recipe;
}

// Find all the items in the combined Item Input inventories and create oversized ItemStacks
Set<ItemStack> ingredientStacks = findAllItemsInInputs(inputs);

// Find all the fluids in the combined Fluid Input inventories and create oversized FluidStacks
Set<FluidStack> fluidStacks = findAllFluidsInInputs(fluidInputs);

// Find the maximum number of recipes that can be performed from the items in the item input inventories
int itemMultiplier = getMinRatioItem(ingredientStacks, recipe, parallelAmount);
// Find the maximum number of recipes that be be performed from the items in the fluid input inventories
int fluidMultiplier = getMinRatioFluid(fluidStacks, recipe, parallelAmount);

// Find the maximum number of recipes that can be performed from all available inputs
int minMultiplier = Math.min(itemMultiplier, fluidMultiplier);

// No fluids or items were found in the input inventories that match the recipe's inputs
if(minMultiplier == Integer.MAX_VALUE) {
return null;
}

// Create holders for the various parts of the new multiplied Recipe
List<CountableIngredient> newRecipeInputs = new ArrayList<>();
List<FluidStack> newFluidInputs = new ArrayList<>();
List<ItemStack> outputItems = new ArrayList<>();
List<FluidStack> outputFluids = new ArrayList<>();

// Populate the various holders of the multiplied Recipe
this.multiplyInputsAndOutputs(newRecipeInputs, newFluidInputs, outputItems, outputFluids, recipe, minMultiplier);

// Build the new Recipe with multiplied components
RecipeBuilder<?> newRecipe = recipeMap.recipeBuilder()
.inputsIngredients(newRecipeInputs)
.fluidInputs(newFluidInputs)
.outputs(outputItems)
.fluidOutputs(outputFluids)
.EUt(recipe.getEUt())
.duration(recipe.getDuration());

// Add the chanced outputs to the multiplied recipe
copyChancedItemOutputs(newRecipe, recipe, minMultiplier);

// Return the multiplied Recipe
return newRecipe.build().getResult();
}

/**
* Copies the chanced outputs of a Recipe and expands them for the number of parallel recipes performed
*
* @param newRecipe An instance of the recipe after the inputs and outputs have been multiplied from the number of parallels
* @param oldRecipe The original recipe before any parallel multiplication
* @param numberOfOperations The number of parallel operations that have been performed
*/
protected static void copyChancedItemOutputs(RecipeBuilder<?> newRecipe, Recipe oldRecipe, int numberOfOperations) {

// Iterate through the chanced outputs
for(Recipe.ChanceEntry entry : oldRecipe.getChancedOutputs()) {

int chance = entry.getChance();
int boost = entry.getBoostPerTier();

// Add individual chanced outputs per number of parallel operations performed, to mimic regular recipes.
// This is done instead of simply batching the chanced outputs by the number of parallel operations performed
IntStream.range(0, numberOfOperations).forEach(value -> {
ItemStack itemStack = entry.getItemStack().copy();
newRecipe.chancedOutput(itemStack, chance, boost);
});
}
}

/**
* Copies all items in the input inventory into single oversized stacks per unique item.
* Skips Empty slots
*
* @param inputs The inventory handler for the input inventory
* @return a {@link Set} of {@link ItemStack}s comprising of oversized stacks for each unique item in the input inventory
*/
protected static Set<ItemStack> findAllItemsInInputs(IItemHandlerModifiable inputs) {
Set<ItemStack> countIngredients = new HashSet<>();

// Iterate through the entire input inventory
for(int slot = 0; slot < inputs.getSlots(); slot++) {
ItemStack wholeItemStack = inputs.getStackInSlot(slot);

// Skip empty slots
if(wholeItemStack.isEmpty()) {
continue;
}

// Populate the initially empty Set with an initial value
if(countIngredients.isEmpty()) {
countIngredients.add(wholeItemStack.copy());
}
else {
// Iterate through the existing Set, attempting to match the item from the input inventory to an entry in the Set
boolean found = false;
for(ItemStack stack : countIngredients) {
if(ItemStack.areItemsEqual(stack, wholeItemStack)) {
// If a matching item was found, increment the count of the item in the Set
stack.setCount(stack.getCount() + wholeItemStack.getCount());
found = true;
break;
}
}
// If no matching ItemStack was found in the Set, add a new entry to the Set
if(!found) {
countIngredients.add(wholeItemStack.copy());
}
}
}
return countIngredients;
}

/**
* Finds the maximum number of Recipes that can be performed at the same time based on the items in the item input inventory
* @param countIngredients a {@link Set} of {@link ItemStack}s that is the result of calling {@link ParallelLogic#findAllItemsInInputs(IItemHandlerModifiable)}
* @param recipe The {@link Recipe} for which to find the maximum that can be ran simultaneously
* @param parallelAmount The limit on the amount of recipes that can be performed at one time
* @return The Maximum number of Recipes that can be performed at a single time based on the available Items
*/
protected int getMinRatioItem(Set<ItemStack> countIngredients, Recipe recipe, int parallelAmount) {

int minMultiplier = Integer.MAX_VALUE;

// Iterate through the recipe inputs
for(CountableIngredient recipeInputs : recipe.getInputs()) {

// Skip not consumed inputs
if(recipeInputs.getCount() == 0) {
continue;
}

// For every stack in the ingredients gathered from the input bus. This is most likely going to be oversized stacks
for(ItemStack wholeItemStack : countIngredients) {

if(recipeInputs.getIngredient().apply(wholeItemStack)) {
//The ratio will either be set by the parallel limit, or the oversized stack divided by the amount of inputs the recipe takes
int ratio = Math.min(parallelAmount, wholeItemStack.getCount() / recipeInputs.getCount());
//Find the maximum number of recipes that can be performed by decrementing the ratio, which is limited
//by the number of machines (as absolute max), or the amount of ingredients in the input bus
if(ratio < minMultiplier) {
minMultiplier = ratio;
}
break;
}

}
}
return minMultiplier;
}

/**
* Finds all unique Fluids in the combined Fluid Input inventory, and combines them into a {@link Set} of oversized {@link FluidStack}s
* Skips Empty Fluid Tanks
*
* @param fluidInputs The combined fluid input inventory handler, in the form of an {@link IMultipleTankHandler}
* @return a {@link Set} of unique {@link FluidStack}s for each fluid in the handler. Will be oversized stacks if required
*/
protected static Set<FluidStack> findAllFluidsInInputs(IMultipleTankHandler fluidInputs) {

Set<FluidStack> combinedFluids = new HashSet<>();

// Iterate through the different tanks that make up the structure
for(IFluidTank tank : fluidInputs) {

// Check if the tank contains a Fluid
if(tank.getFluid() != null) {

// Populate the set with an initial value on the first passthrough
if(combinedFluids.isEmpty()) {
combinedFluids.add(new FluidStack(tank.getFluid(), tank.getFluidAmount()));
}
else {

// Create a FluidStack from the information provided from the tank
FluidStack tankFluid = new FluidStack(tank.getFluid(), tank.getFluidAmount());

boolean found = false;

// Iterate through the Set of FluidStacks, checking if the created FluidStack already exists
for(FluidStack fs : combinedFluids) {
if(fs.isFluidEqual(tankFluid)) {
// Increment the count of the existing FluidStack to create oversized stacks
fs.amount = fs.amount + tank.getFluidAmount();
found = true;
break;
}
}
// If a matching FluidStack was not found in the Set, add a new entry
if(!found) {
combinedFluids.add(tankFluid.copy());
}
}
}
}

return combinedFluids;
}

/**
* Finds the maximum number of a specific recipe that can be performed based upon the fluids in the fluid inputs
*
* @param countFluid a {@link Set} of {@link FluidStack}s that is the result of calling {@link ParallelLogic#findAllFluidsInInputs(IMultipleTankHandler)}
* @param recipe The {@link Recipe} for which to find the maximum that can be ran simultaneously
* @param parallelAmount The limit on the amount of recipes that can be performed at one time
* @return The Maximum number of Recipes that can be performed at a single time based on the available Fluids
*/
protected int getMinRatioFluid(Set<FluidStack> countFluid, Recipe recipe, int parallelAmount) {

int minMultiplier = Integer.MAX_VALUE;

// Iterate through the fluid inputs in the recipe
for(FluidStack fs : recipe.getFluidInputs()) {

// Skip Not consumed Fluid inputs
if(fs.amount == 0) {
continue;
}

// Iterate through the fluids in the input hatches. This will likely be oversized stacks
for(FluidStack inputStack : countFluid) {

if(fs.isFluidEqual(inputStack)) {
//The ratio will either be set by the parallel limit, or the oversized stack divided by the amount of inputs the recipe takes
int ratio = Math.min(parallelAmount, inputStack.amount / fs.amount);

//Find the maximum number of recipes that can be performed by decrementing the ratio, which is limited
//by the number of machines (as absolute max), or the amount of ingredients in the input bus
if(ratio < minMultiplier) {
minMultiplier = ratio;
}
break;
}
}
}

return minMultiplier;
}

protected static ItemStack copyItemStackWithCount(ItemStack itemStack, int count) {
ItemStack itemCopy = itemStack.copy();
itemCopy.setCount(count);
return itemCopy;
}

protected static FluidStack copyFluidStackWithAmount(FluidStack fluidStack, int count) {
FluidStack fluidCopy = fluidStack.copy();
fluidCopy.amount = count;
return fluidCopy;
}

protected void multiplyInputsAndOutputs(List<CountableIngredient> newRecipeInputs,
List<FluidStack> newFluidInputs,
List<ItemStack> outputItems,
List<FluidStack> outputFluids,
Recipe recipe,
int numberOfOperations) {

recipe.getInputs().forEach(ci ->
newRecipeInputs.add(new CountableIngredient(ci.getIngredient(),
ci.getCount() * numberOfOperations)));

recipe.getFluidInputs().forEach(fluidStack ->
newFluidInputs.add(new FluidStack(fluidStack.getFluid(),
fluidStack.amount * numberOfOperations)));

recipe.getOutputs().forEach(itemStack ->
outputItems.add(copyItemStackWithCount(itemStack,
itemStack.getCount() * numberOfOperations)));

recipe.getFluidOutputs().forEach(fluidStack ->
outputFluids.add(copyFluidStackWithAmount(fluidStack,
fluidStack.amount * numberOfOperations)));
}
}