The Markov_Models
package builds Markov chains from datasets using scikit-learn
for unsupervised classification. The Markov_Chain
module can be used to generally manipulate and cluster datasets, whereas the MSM
module is intended for building Markov State Models and contains analysis tools consistent with the field.
git clone https://github.com/pgromano/Markov_Models.git
cd Markov_Models
python -m pip install -e . --user
A detailed example of generating a Markov State Model (MSM) can be found in here.
In [1]: import Markov_Models as mm
In [2]: files = []
In [3]: files.append(['/path/to/data_set_1/parameter_1', '/path/to/data_set_1/parameter_2'])
In [4]: files.append(['/path/to/data_set_2/parameter_1', '/path/to/data_set_2/parameter_2'])
In [5]: data = mm.load.from_CSV(files)
In [6]: model = mm.Markov_Chain(data, estimator='KMeans')
In [7]: model.fit(N)