Skip to content

GuoQuanhao/YOLOv4-Paddle

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv4-Paddle

A YOLOv4 reproduction by PaddlePaddle

数据文件准备

数据集已挂载至aistudio项目中,如果需要本地训练可以从这里下载数据集,和标签文件

数据集目录大致如下,可根据实际情况修改

Data
|-- coco
|   |-- annotions
|   |-- images
|      |-- train2017
|      |-- val2017
|      |-- test2017
|   |-- labels
|      |-- train2017
|      |-- val2017
|      |-- train2017.cache(初始解压可删除,训练时会自动生成)
|      |-- val2017.cache(初始解压可删除,训练时会自动生成)
|   |-- test-dev2017.txt
|   |-- val2017.txt
|   |-- train2017.txt

训练

单卡训练

python train.py --batch-size 16 --img 416 416 --data coco.yaml --cfg cfg/yolov4-pacsp.cfg --weights '' --name yolov4-pacsp --notest

多卡训练

python train_multi_gpu.py --batch-size 32 --img 416 416 --data coco.yaml --cfg cfg/yolov4-pacsp.cfg  --weights '' --name yolov4-pacsp --notest

多卡训练项目已提交至脚本任务YOLOv4

多卡训练日志可在此处下载,提取码:0cxk

test-dev数据集验证

python testdev.py --img 416 --conf 0.001 --batch 32 --data coco.yaml --cfg cfg/yolov4-mish-416.cfg --weights weights/yolov4-mish-416.weights

完成后会生成detections_test-dev2017_yolov4_results.json文件,你需要将其压缩为detections_test-dev2017_yolov4_results.zip并在COCO Detection Challenge网站提交

提交完成后等待验证结束,点击View scoring output log即可下载stdout.txt并查看验证情况

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.413
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.622
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.453
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.203
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.450
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.565
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.328
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.527
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.564
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.327
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.620
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.754

验证结果如下所示

Model Frame Test Size APtest AP50test AP75test APStest APMtest APLtest cfg weights
YOLOv4mish-416 Paddle 416 0.413 0.622 0.453 0.203 0.450 0.565 cfg weights/r2nw
YOLOv4leaky-416 Paddle 416 0.405 0.616 0.443 0.195 0.441 0.552 cfg weights/wx7w
YOLOv4 Paddle 416 0.409 0.614 0.447 0.188 0.449 0.572 cfg weights/lwdy
YOLOv4mish-416 Darknet 416 0.415 0.633 0.447 0.219 0.444 0.553 cfg weights
YOLOv4leaky-416 Darknet 416 0.407 0.627 0.439 0.214 0.437 0.540 cfg weights
YOLOv4 Darknet 416 0.412 - - - - - cfg weights

验证所产生的json文件可在此处下载yolov4-mish-416/rmb5,yolov4-leaky-416/nkfo,darknet/lww5

推理

python detect.py --cfg cfg/yolov4-pacsp-x.cfg --weights weights/yolov4-pacsp-x.weights

运行结果将会保存在inference/output文件夹下

关于作者

姓名 郭权浩
学校 电子科技大学研2020级
研究方向 计算机视觉
主页 Deep Hao的主页
如有错误,请及时留言纠正,非常蟹蟹!
后续会有更多论文复现系列推出,欢迎大家有问题留言交流学习,共同进步成长!

About

A YOLOv4 reproduction by PaddlePaddle

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published