Skip to content

Commit

Permalink
Merge pull request #406 from magicyuan876/main
Browse files Browse the repository at this point in the history
添加查询时使用embedding缓存功能
  • Loading branch information
LarFii authored Dec 6, 2024
2 parents 0ca819d + c01c15f commit 2a2756d
Show file tree
Hide file tree
Showing 5 changed files with 431 additions and 34 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -596,6 +596,7 @@ if __name__ == "__main__":
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese"}`: sets example limit and output language | `example_number: all examples, language: English` |
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
| **embedding\_cache\_config** | `dict` | Configuration for embedding cache. Includes `enabled` (bool) to toggle cache and `similarity_threshold` (float) for cache retrieval | `{"enabled": False, "similarity_threshold": 0.95}` |

## API Server Implementation

Expand Down
112 changes: 112 additions & 0 deletions examples/lightrag_openai_compatible_demo_embedding_cache.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.utils import EmbeddingFunc
import numpy as np

WORKING_DIR = "./dickens"

if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)


async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await openai_complete_if_cache(
"solar-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
**kwargs,
)


async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model="solar-embedding-1-large-query",
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
)


async def get_embedding_dim():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
embedding_dim = embedding.shape[1]
return embedding_dim


# function test
async def test_funcs():
result = await llm_model_func("How are you?")
print("llm_model_func: ", result)

result = await embedding_func(["How are you?"])
print("embedding_func: ", result)


# asyncio.run(test_funcs())


async def main():
try:
embedding_dimension = await get_embedding_dim()
print(f"Detected embedding dimension: {embedding_dimension}")

rag = LightRAG(
working_dir=WORKING_DIR,
embedding_cache_config={
"enabled": True,
"similarity_threshold": 0.90,
},
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)

with open("./book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())

# Perform naive search
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)

# Perform local search
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)

# Perform global search
print(
await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="global"),
)
)

# Perform hybrid search
print(
await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid"),
)
)
except Exception as e:
print(f"An error occurred: {e}")


if __name__ == "__main__":
asyncio.run(main())
5 changes: 4 additions & 1 deletion lightrag/lightrag.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,10 @@ class LightRAG:
working_dir: str = field(
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
)

# Default not to use embedding cache
embedding_cache_config: dict = field(
default_factory=lambda: {"enabled": False, "similarity_threshold": 0.95}
)
kv_storage: str = field(default="JsonKVStorage")
vector_storage: str = field(default="NanoVectorDBStorage")
graph_storage: str = field(default="NetworkXStorage")
Expand Down
Loading

0 comments on commit 2a2756d

Please sign in to comment.