-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #406 from magicyuan876/main
添加查询时使用embedding缓存功能
- Loading branch information
Showing
5 changed files
with
431 additions
and
34 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
112 changes: 112 additions & 0 deletions
112
examples/lightrag_openai_compatible_demo_embedding_cache.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import os | ||
import asyncio | ||
from lightrag import LightRAG, QueryParam | ||
from lightrag.llm import openai_complete_if_cache, openai_embedding | ||
from lightrag.utils import EmbeddingFunc | ||
import numpy as np | ||
|
||
WORKING_DIR = "./dickens" | ||
|
||
if not os.path.exists(WORKING_DIR): | ||
os.mkdir(WORKING_DIR) | ||
|
||
|
||
async def llm_model_func( | ||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs | ||
) -> str: | ||
return await openai_complete_if_cache( | ||
"solar-mini", | ||
prompt, | ||
system_prompt=system_prompt, | ||
history_messages=history_messages, | ||
api_key=os.getenv("UPSTAGE_API_KEY"), | ||
base_url="https://api.upstage.ai/v1/solar", | ||
**kwargs, | ||
) | ||
|
||
|
||
async def embedding_func(texts: list[str]) -> np.ndarray: | ||
return await openai_embedding( | ||
texts, | ||
model="solar-embedding-1-large-query", | ||
api_key=os.getenv("UPSTAGE_API_KEY"), | ||
base_url="https://api.upstage.ai/v1/solar", | ||
) | ||
|
||
|
||
async def get_embedding_dim(): | ||
test_text = ["This is a test sentence."] | ||
embedding = await embedding_func(test_text) | ||
embedding_dim = embedding.shape[1] | ||
return embedding_dim | ||
|
||
|
||
# function test | ||
async def test_funcs(): | ||
result = await llm_model_func("How are you?") | ||
print("llm_model_func: ", result) | ||
|
||
result = await embedding_func(["How are you?"]) | ||
print("embedding_func: ", result) | ||
|
||
|
||
# asyncio.run(test_funcs()) | ||
|
||
|
||
async def main(): | ||
try: | ||
embedding_dimension = await get_embedding_dim() | ||
print(f"Detected embedding dimension: {embedding_dimension}") | ||
|
||
rag = LightRAG( | ||
working_dir=WORKING_DIR, | ||
embedding_cache_config={ | ||
"enabled": True, | ||
"similarity_threshold": 0.90, | ||
}, | ||
llm_model_func=llm_model_func, | ||
embedding_func=EmbeddingFunc( | ||
embedding_dim=embedding_dimension, | ||
max_token_size=8192, | ||
func=embedding_func, | ||
), | ||
) | ||
|
||
with open("./book.txt", "r", encoding="utf-8") as f: | ||
await rag.ainsert(f.read()) | ||
|
||
# Perform naive search | ||
print( | ||
await rag.aquery( | ||
"What are the top themes in this story?", param=QueryParam(mode="naive") | ||
) | ||
) | ||
|
||
# Perform local search | ||
print( | ||
await rag.aquery( | ||
"What are the top themes in this story?", param=QueryParam(mode="local") | ||
) | ||
) | ||
|
||
# Perform global search | ||
print( | ||
await rag.aquery( | ||
"What are the top themes in this story?", | ||
param=QueryParam(mode="global"), | ||
) | ||
) | ||
|
||
# Perform hybrid search | ||
print( | ||
await rag.aquery( | ||
"What are the top themes in this story?", | ||
param=QueryParam(mode="hybrid"), | ||
) | ||
) | ||
except Exception as e: | ||
print(f"An error occurred: {e}") | ||
|
||
|
||
if __name__ == "__main__": | ||
asyncio.run(main()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.