Skip to content
/ pydro Public
forked from AlexMoreo/pydro

A Python reimplementation of the Distributional Random Oversampling method for binary text classification

Notifications You must be signed in to change notification settings

HLT-ISTI/pydro

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

PyDRO:

A Python reimplementation of the Distributional Random Oversampling method for binary text classification

This repo is a stand-alone (re)implementation of the Distributional Random Oversampling (DRO) method presented in SIGIR'16. The former implementation was part of the JaTeCs framework for Java.

Distributional Random Oversampling (DRO) is an oversampling method to counter data imbalance in binary text classification. DRO generates new random minority-class synthetic documents by exploiting the distributional properties of the terms in the collection. The variability introduced by the oversampling method is enclosed in a latent space; the original space is replicated and left untouched.

It comes with a main file showing an example of how to use it on Reuters-21578.

Reference:

@inproceedings{moreo2016distributional,
  title={Distributional Random Oversampling for Imbalanced Text Classification},
  author={Moreo, Alejandro and Esuli, Andrea and Sebastiani, Fabrizio},
  booktitle={SIGIR 2016, 39th ACM Conference on Research and Development in Information Retrieval, Pisa, IT},
  year={2016}
}

About

A Python reimplementation of the Distributional Random Oversampling method for binary text classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%