-
RPCA: Robust PCA (44)
-
- RPCA: Robust Principal Component Analysis (De la Torre and Black, 2001) website
-
- PCP: Principal Component Pursuit (Candes et al. 2009)
-
- FPCP: Fast PCP (Rodriguez and Wohlberg, 2013)
-
- R2PCP: Riemannian Robust Principal Component Pursuit (Hintermüller and Wu, 2014)
-
- AS-RPCA: Active Subspace: Towards Scalable Low-Rank Learning (Liu and Yan, 2012)
-
- ALM: Augmented Lagrange Multiplier (Tang and Nehorai 2011)
-
- EALM: Exact ALM (Lin et al. 2009) website
-
- IALM: Inexact ALM (Lin et al. 2009) website
-
- IALM_LMSVDS: IALM with LMSVDS (Liu et al. 2012)
-
- IALM_BLWS: IALM with BLWS (Lin and Wei, 2010)
-
- APG_PARTIAL: Partial Accelerated Proximal Gradient (Lin et al. 2009) website
-
- APG: Accelerated Proximal Gradient (Lin et al. 2009) website
-
- DUAL: Dual RPCA (Lin et al. 2009) website
-
- SVT: Singular Value Thresholding (Cai et al. 2008) website
-
- ADM: Alternating Direction Method (Yuan and Yang, 2009)
-
- LSADM: LSADM (Goldfarb et al. 2010)
-
- L1F: L1 Filtering (Liu et al. 2011)
-
- DECOLOR: Contiguous Outliers in the Low-Rank Representation (Zhou et al. 2011) website1 website2
-
- RegL1-ALM: Low-Rank Matrix Approximation under Robust L1-Norm (Zheng et al. 2012) website
-
- GA: Grassmann Average (Hauberg et al. 2014) website
-
- GM: Grassmann Median (Hauberg et al. 2014) website
-
- TGA: Trimmed Grassmann Average (Hauberg et al. 2014) website
-
- STOC-RPCA: Online Robust PCA via Stochastic Optimization (Feng et al. 2013) website
-
- MoG-RPCA: Mixture of Gaussians RPCA (Zhao et al. 2014) website
-
- OP-RPCA: Robust PCA via Outlier Pursuit (Xu et al. 2012) website
-
- NSA1: Non-Smooth Augmented Lagrangian v1 (Aybat et al. 2011)
-
- NSA2: Non-Smooth Augmented Lagrangian v2 (Aybat et al. 2011)
-
- PSPG: Partially Smooth Proximal Gradient (Aybat et al. 2012)
-
- flip-SPCP-sum-SPG: Flip-Flop version of Stable PCP-sum solved by Spectral Projected Gradient (Aravkin et al. 2014)
-
- flip-SPCP-max-QN: Flip-Flop version of Stable PCP-max solved by Quasi-Newton (Aravkin et al. 2014)
-
- Lag-SPCP-SPG: Lagrangian SPCP solved by Spectral Projected Gradient (Aravkin et al. 2014)
-
- Lag-SPCP-QN: Lagrangian SPCP solved by Quasi-Newton (Aravkin et al. 2014)
-
- FW-T: SPCP solved by Frank-Wolfe method (Mu et al. 2014) website
-
- BRPCA-MD: Bayesian Robust PCA with Markov Dependency (Ding et al. 2011) website
-
- BRPCA-MD-NSS: BRPCA-MD with Non-Stationary Noise (Ding et al. 2011) website
-
- VBRPCA: Variational Bayesian RPCA (Babacan et al. 2011)
-
- PRMF: Probabilistic Robust Matrix Factorization (Wang et al. 2012) website
-
- OPRMF: Online PRMF (Wang et al. 2012) website
-
- MBRMF: Markov BRMF (Wang and Yeung, 2013) website
-
- TFOCS-EC: TFOCS with equality constraints (Becker et al. 2011) website
-
- TFOCS-IC: TFOCS with inequality constraints (Becker et al. 2011) website
-
- GoDec: Go Decomposition (Zhou and Tao, 2011) website
-
- SSGoDec: Semi-Soft GoDec (Zhou and Tao, 2011) website
-
- GreGoDec: Greedy Semi-Soft GoDec Algotithm (Zhou and Tao, 2013) website
-
ST: Subspace Tracking (3)
-
- GRASTA: Grassmannian Robust Adaptive Subspace Tracking Algorithm (He et al. 2012) website
-
- GOSUS: Grassmannian Online Subspace Updates with Structured-sparsity (Xu et al. 2013) website
-
- pROST: Robust PCA and subspace tracking from incomplete observations using L0-surrogates (Hage and Kleinsteuber, 2013) website
-
MC: Matrix Completion (5)
-
- LRGeomCG: Low-rank matrix completion by Riemannian optimization (Bart Vandereycken, 2013) website1 website2
-
- GROUSE: Grassmannian Rank-One Update Subspace Estimation (Balzano et al. 2010) website
-
- OptSpace: Matrix Completion from Noisy Entries (Keshavan et al. 2009) website
-
- FPC: Fixed point and Bregman iterative methods for matrix rank minimization (Ma et al. 2008) website
-
- SVT: A singular value thresholding algorithm for matrix completion (Cai et al. 2008) website
-
LRR: Low Rank Recovery (6)
-
- EALM: Exact ALM (Lin et al. 2009)
-
- IALM: Inexact ALM (Lin et al. 2009)
-
- ADM: Alternating Direction Method (Lin et al. 2011)
-
- LADMAP: Linearized ADM with Adaptive Penalty (Lin et al. 2011)
-
- FastLADMAP: Fast LADMAP (Lin et al. 2011)
-
- ROSL: Robust Orthonormal Subspace Learning (Shu et al. 2014) website
-
TTD: Three-Term Decomposition (4)
-
- 3WD: 3-Way-Decomposition (Oreifej et al. 2012) website
-
- MAMR: Motion-Assisted Matrix Restoration (Ye et al. 2015) website
-
- RMAMR: Robust Motion-Assisted Matrix Restoration (Ye et al. 2015) website
-
- ADMM: Alternating Direction Method of Multipliers (Parikh and Boyd, 2014) website1 website2
-
NMF: Non-Negative Matrix Factorization (14)
-
- NMF-MU: NMF solved by Multiplicative Updates
-
- NMF-PG: NMF solved by Projected Gradient
-
- NMF-ALS: NMF solved by Alternating Least Squares
-
- NMF-ALS-OBS: NMF solved by Alternating Least Squares with Optimal Brain Surgeon
-
- PNMF: Probabilistic Non-negative Matrix Factorization
-
- ManhNMF: Manhattan NMF (Guan et al. 2013) website
-
- NeNMF: NMF via Nesterovs Optimal Gradient Method (Guan et al. 2012) website
-
- LNMF: Spatially Localized NMF (Li et al. 2001)
-
- ENMF: Exact NMF (Gillis and Glineur, 2012) website
-
- nmfLS2: Non-negative Matrix Factorization with sparse matrix (Ji and Eisenstein, 2013) website
-
- Semi-NMF: Semi Non-negative Matrix Factorization
-
- Deep-Semi-NMF: Deep Semi Non-negative Matrix Factorization (Trigeorgis et al. 2014) website
-
- iNMF: Incremental Subspace Learning via NMF (Bucak and Gunsel, 2009) website
-
- DRMF: Direct Robust Matrix Factorization (Xiong et al. 2011) website
-
NTF: Non-Negative Tensor Factorization (6)
-
- betaNTF: Simple beta-NTF implementation (Antoine Liutkus, 2012)
-
- bcuNTD: Non-negative Tucker Decomposition by block-coordinate update (Xu and Yin, 2012) website
-
- bcuNCP: Non-negative CP Decomposition by block-coordinate update (Xu and Yin, 2012) website
-
- NTD-MU: Non-negative Tucker Decomposition solved by Multiplicative Updates (Zhou et al. 2012)
-
- NTD-APG: Non-negative Tucker Decomposition solved by Accelerated Proximal Gradient (Zhou et al. 2012)
-
- NTD-HALS: Non-negative Tucker Decomposition solved by Hierarchical ALS (Zhou et al. 2012)
-
TD: Tensor Decomposition (11)
-
- HoSVD: Higher-order Singular Value Decomposition (Tucker Decomposition)
-
- HoRPCA-IALM: HoRPCA solved by IALM (Goldfarb and Qin, 2013) website
-
- HoRPCA-S: HoRPCA with Singleton model solved by ADAL (Goldfarb and Qin, 2013) website
-
- HoRPCA-S-NCX: HoRPCA with Singleton model solved by ADAL (non-convex) (Goldfarb and Qin, 2013) website
-
- Tucker-ADAL: Tucker Decomposition solved by ADAL (Goldfarb and Qin, 2013) website
-
- Tucker-ALS: Tucker Decomposition solved by ALS
-
- CP-ALS: PARAFAC/CP decomposition solved by ALS
-
- CP-APR: PARAFAC/CP decomposition solved by Alternating Poisson Regression (Chi et al. 2011)
-
- CP2: PARAFAC2 decomposition solved by ALS (Bro et al. 1999)
-
- RSTD: Rank Sparsity Tensor Decomposition (Yin Li, 2010) website
-
- t-SVD: Tensor SVD in Fourrier Domain (Zhang et al. 2013)
-
Some remarks:
-
- The FW-T algorithm of Mu et al. (2014) works only with CVX library. Download and install it in: lrslibrary/libs/cvx/.
-
- The DECOLOR algorithm of Zhou et al. (2011) don't works in MATLAB R2014a(x64), but works successfully in MATLAB R2013b(x64) and both R2014a(x86) and R2013b(x86).
forked from qiangsiwei/tensor_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
HURONG0510/tensor_tools
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
张量分解算法整理
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- MATLAB 69.3%
- HTML 17.2%
- C++ 8.0%
- Python 4.7%
- Other 0.8%