In this project we used 10X10 matrices of natural numbers in order to represent undirected graphs.
- matrix[i][j] represents the weight of the edge from i to j
- Note: If matrix[i][j]=0 -> There is no edge between vertex i and vertex j
- Build 10X10 matrix based on 100 numbers input. For example: 1 0 4 6 235 74.....
- Given 2 numbers i, j, the program will return if there is a route between vertex i and vertex j
- Given 2 numbers i, j, the program will return the length of the shortest path between vertex i and vertex j based on Floyd–Warshall Algorithm. If there is no such route, the program will return default value of (-1).
- Input= 0 6 5 29 4 0 12 15 46 10 6 0 32 41 35 18 15 48 41 4 5 32 0 30 2 14 48 24 30 27 29 41 30 0 48 10 29 13 31 42 4 35 2 48 0 30 24 40 22 23 0 18 14 10 30 0 1 11 8 12 12 15 48 29 24 1 0 17 45 8 15 48 24 13 40 11 17 0 21 33 46 41 30 31 22 8 45 21 0 8 10 4 27 42 23 12 8 33 8 0
- The matrix:
| 0 | 6 | 5 | 29 | 4 | 0 | 12 | 15 | 46 | 10 |
|---|---|---|---|---|---|---|---|---|---|
| 6 | 0 | 32 | 41 | 35 | 18 | 15 | 48 | 41 | 4 |
| 5 | 32 | 0 | 30 | 2 | 14 | 48 | 24 | 30 | 27 |
| 29 | 41 | 30 | 0 | 48 | 10 | 29 | 13 | 31 | 42 |
| 4 | 35 | 2 | 48 | 0 | 30 | 24 | 40 | 22 | 23 |
| 0 | 18 | 14 | 10 | 30 | 0 | 1 | 11 | 8 | 12 |
| 12 | 15 | 48 | 29 | 24 | 1 | 0 | 17 | 45 | 8 |
| 15 | 48 | 24 | 13 | 40 | 11 | 17 | 0 | 21 | 33 |
| 46 | 41 | 30 | 31 | 22 | 8 | 45 | 21 | 0 | 8 |
| 10 | 4 | 27 | 42 | 23 | 12 | 8 | 33 | 8 | 0 |
- i=2, j=5 --> True, 14
- i=7, j=7 --> False, (-1)
- Eden Roas
- Hadar Bitan