It is a library which will serve as a base to develop circuit based applications and educational software on top of it. BinPy is a clear representation of fundamentals. Everything has been written from scratch such as gates, logical operations, etc. This package does not depend on any external library other than pure Python. It aims to extend the hardware programming concepts to Python.
Here's an example of SR latch constructed from a pair of cross-coupled NOR gates
from BinPy import *
a = Connector()
b = Connector()
g1 = NOR(R,b)
g1.setOutput(a) # SET OUTPUT as a
g2 = NOR(S,a)
g2.setOutput(b) # SET OUTPUT as b
print [g1.output(),g2.output]
Output
Q: True Q': False
Q: False Q': True
Q: False Q': True
Q: False Q': False #Invalid State
Operations, Combinatonal Logic and Algorithms
from BinPy import *
#Operations
operator = Operations()
operator.ADD(1011,11)
operator.SUB(1011,11)
operator.COMP('0011',1) #Second argument chooses betweem 1's or 2's Compliment
#Combinational Logic
d = Decoder([1,1,0,1])
print "Decoder Out: ", d.output('01')
#Sequential Circuits
a = DFlipFlop(1,0)
print "DFlipFlop Out: ", a.output()
#IC
myIC = IC_7400()
p = {1:1,2:0,4:0,5:0,7:0,10:1,9:1,13:0,12:0,14:1}
myIC.setIC(p)
print "IC_7400 Out: ", myIC.run()
myIC1 = IC_7401()
p = {2:0,3:1,5:0,6:0,7:0,8:1,9:1,11:0,12:0,14:1}
myIC1.setIC(p)
print "IC_7401 Out: ", myIC1.run()
#Algorithms
#Includes the Quine-McCluskey algorithm for solving K-Maps
FinalEquation = QM(['A','B'])
print "Minimized Boolean Equation : " , FinalEquation.get_function(qm.solve([0,1,2],[])[1])
Output
{'carry': 0, 'sum': [1, 1, 1, 0]}
{'carry': 1, 'difference': [1, 0, 0, 0]}
Decoder Out: 1
DFlipFlop Out: [1,0]
IC_7400 Out: {8: 0, 11: 1, 3: 1, 6: 1}
IC_7401 Out: {1: 1, 10: 0, 4: 1, 13: 1}
Minimized Boolean Equation : ((NOT B) OR (NOT A))
-
All basic logic gates (NOT, OR, NOR, AND, NAND, XOR, XNOR)
-
Combinational logics
- Adder
- Subtractor
- Multiplier
- MUX (2:1, 4:1, 8:1, 16:1)
- DEMUX (1:2, 1:4, 1:8, 1:16)
- Encoder
-
IC
- 7400
- 7401
- 7402
- 7403
- 7404
- 7405
- 7408
- 7410
- 7411
- 7412
- 7413
- 7415
- 7416
- 7417
- 7418
- 7419
- 7420
- 7421
- 7422
- 7424
- 7425
- 7426
- 7427
- 7428
- 7430
- 7432
- 7433
- 7437
- 7440
- 7451
- 7454
- 7455
- 7458
- 7464
- 7486
- 741G00
- 741G02
- 741G03
- 741G04
- 741G05
- 741G08
- 7431
- 7442
- 7443
- 7444
- 7445
- 74133
- 74260
-
Algorithms
- Quine-McCluskey Algorithm (To find minimized Boolean Equation)
- Moore Machine Optimizer
Auto-generated documentation is available for reference at BinPy docs
Install with pip
sudo apt-get install pip setuptools ipython
sudo pip install https://github.com/BinPy/BinPy/zipball/master
Install using git
sudo apt-get install git setuptools ipython
git clone https://github.com/BinPy/BinPy.git
cd BinPy/
sudo python setup.py install
- Introduction of all ICs
- Introduction of problem solving algorithms
- Addition of Microprocessors and Analog Devices
- Graphical representation of the circuit
- ...
- Report Bugs and Issues
- Solve Bugs and Issues
- Write Tutorials, Examples and Documentation