Skip to content

PHP package that provides functions for calculating mathematical statistics of numeric data.

License

Notifications You must be signed in to change notification settings

Hi-Folks/statistics

Repository files navigation

PHP package for Statistics

Statistics PHP package

Latest Version on Packagist Total Downloads
Static Code analysis Packagist License
Packagist PHP Version Support GitHub last commit

Tests

Introducing a PHP package enabling comprehensive mathematical statistics calculations on numeric data.

I've put together a package of useful statistical functions.

These functions originally stemmed from my exploration of FIT files, which contain a wealth of data about sports activities. Within these files, you can find detailed information on metrics such as Heart Rate, Speed, Cadence, Power, and more. I developed these statistical functions to help gain deeper insights into the numerical data and performance of these sports activities.

The functions provided by this package, cover a range of measures, including mean, mode, median, range, quantiles, first quartile (25th percentile), third quartile (75th percentile), frequency tables (both cumulative and relative), standard deviation (applicable to both populations and samples), and variance (once again, for populations and samples).

This package is inspired by the Python statistics module

Installation

You can install the package via composer:

composer require hi-folks/statistics

Usage

Stat class

Stat class has methods to calculate an average or typical value from a population or sample. This class provides methods for calculating mathematical statistics of numeric data. The various mathematical statistics are listed below:

Mathematical Statistic Description
mean() arithmetic mean or "average" of data
median() median or "middle value" of data
medianLow() low median of data
medianHigh() high median of data
mode() single mode (most common value) of discrete or nominal data
multimode() list of modes (most common values) of discrete or nominal data
quantiles() cut points dividing the range of a probability distribution into continuous intervals with equal probabilities
thirdQuartile() 3rd quartile, is the value at which 75 percent of the data is below it
firstQuartile() first quartile, is the value at which 25 percent of the data is below it
pstdev() Population standard deviation
stdev() Sample standard deviation
pvariance() variance for a population
variance() variance for a sample
geometricMean() geometric mean
harmonicMean() harmonic mean
correlation() the Pearson’s correlation coefficient for two inputs
covariance() the sample covariance of two inputs
linearRegression() return the slope and intercept of simple linear regression parameters estimated using ordinary least squares

Stat::mean( array $data )

Return the sample arithmetic mean of the array $data. The arithmetic mean is the sum of the data divided by the number of data points. It is commonly called “the average”, although it is only one of many mathematical averages. It is a measure of the central location of the data.

use HiFolks\Statistics\Stat;
$mean = Stat::mean([1, 2, 3, 4, 4]);
// 2.8
$mean = Stat::mean([-1.0, 2.5, 3.25, 5.75]);
// 2.625

Stat::geometricMean( array $data )

The geometric mean indicates the central tendency or typical value of the data using the product of the values (as opposed to the arithmetic mean which uses their sum).

use HiFolks\Statistics\Stat;
$mean = Stat::geometricMean([54, 24, 36], 1);
// 36.0

Stat::harmonicMean( array $data )

The harmonic mean is the reciprocal of the arithmetic mean() of the reciprocals of the data. For example, the harmonic mean of three values a, b, and c will be equivalent to 3/(1/a + 1/b + 1/c). If one of the values is zero, the result will be zero.

use HiFolks\Statistics\Stat;
$mean = Stat::harmonicMean([40, 60], null, 1);
// 48.0

You can also calculate the harmonic weighted mean. Suppose a car travels 40 km/hr for 5 km, and when traffic clears, speeds up to 60 km/hr for the remaining 30 km of the journey. What is the average speed?

use HiFolks\Statistics\Stat;
Stat::harmonicMean([40, 60], [5, 30], 1);
// 56.0

where:

  • 40, 60: are the elements
  • 5, 30: are the weights for each element (the first weight is the weight of the first element, the second one is the weight of the second element)
  • 1: is the decimal numbers you want to round

Stat::median( array $data )

Return the median (middle value) of numeric data, using the common “mean of middle two” method.

use HiFolks\Statistics\Stat;
$median = Stat::median([1, 3, 5]);
// 3
$median = Stat::median([1, 3, 5, 7]);
// 4

Stat::medianLow( array $data )

Return the low median of numeric data. The low median is always a member of the data set. When the number of data points is odd, the middle value is returned. When it is even, the smaller of the two middle values is returned.

use HiFolks\Statistics\Stat;
$median = Stat::medianLow([1, 3, 5]);
// 3
$median = Stat::medianLow([1, 3, 5, 7]);
// 3

Stat::medianHigh( array $data )

Return the high median of data. The high median is always a member of the data set. When the number of data points is odd, the middle value is returned. When it is even, the larger of the two middle values is returned.

use HiFolks\Statistics\Stat;
$median = Stat::medianHigh([1, 3, 5]);
// 3
$median = Stat::medianHigh([1, 3, 5, 7]);
// 5

Stat::quantiles( array $data, $n=4, $round=null )

Divide data into n continuous intervals with equal probability. Returns a list of n - 1 cut points separating the intervals. Set n to 4 for quartiles (the default). Set n to 10 for deciles. Set n to 100 for percentiles which gives the 99 cut points that separate data into 100 equal-sized groups.

use HiFolks\Statistics\Stat;
$quantiles = Stat::quantiles([98, 90, 70,18,92,92,55,83,45,95,88]);
// [ 55.0, 88.0, 92.0 ]
$quantiles = Stat::quantiles([105, 129, 87, 86, 111, 111, 89, 81, 108, 92, 110,100, 75, 105, 103, 109, 76, 119, 99, 91, 103, 129,106, 101, 84, 111, 74, 87, 86, 103, 103, 106, 86,111, 75, 87, 102, 121, 111, 88, 89, 101, 106, 95,103, 107, 101, 81, 109, 104], 10);
// [81.0, 86.2, 89.0, 99.4, 102.5, 103.6, 106.0, 109.8, 111.0]

Stat::firstQuartile( array $data, $round=null )

The lower quartile, or first quartile (Q1), is the value under which 25% of data points are found when they are arranged in increasing order.

use HiFolks\Statistics\Stat;
$percentile = Stat::firstQuartile([98, 90, 70,18,92,92,55,83,45,95,88]);
// 55.0

Stat::thirdQuartile( array $data, $round=null )

The upper quartile, or third quartile (Q3), is the value under which 75% of data points are found when arranged in increasing order.

use HiFolks\Statistics\Stat;
$percentile = Stat::thirdQuartile([98, 90, 70,18,92,92,55,83,45,95,88]);
// 92.0

Stat::pstdev( array $data )

Return the Population Standard Deviation, a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean of the set, while a high standard deviation indicates that the values are spread out over a wider range.

use HiFolks\Statistics\Stat;
$stdev = Stat::pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]);
// 0.986893273527251
$stdev = Stat::pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75], 4);
// 0.9869

Stat::stdev( array $data )

Return the Sample Standard Deviation, a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean of the set, while a high standard deviation indicates that the values are spread out over a wider range.

use HiFolks\Statistics\Stat;
$stdev = Stat::stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]);
// 1.0810874155219827
$stdev = Stat::stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75], 4);
// 1.0811

Stat::variance ( array $data)

Variance is a measure of dispersion of data points from the mean. Low variance indicates that data points are generally similar and do not vary widely from the mean. High variance indicates that data values have greater variability and are more widely dispersed from the mean.

To calculate the variance from a sample:

use HiFolks\Statistics\Stat;
$variance = Stat::variance([2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]);
// 1.3720238095238095

If you need to calculate the variance on the whole population and not just on a sample you need to use pvariance method:

use HiFolks\Statistics\Stat;
$variance = Stat::pvariance([0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]);
// 1.25

Stat::covariance ( array $x , array $y )

Covariance, static method, returns the sample covariance of two inputs $x and $y. Covariance is a measure of the joint variability of two inputs.

$covariance = Stat::covariance(
    [1, 2, 3, 4, 5, 6, 7, 8, 9],
    [1, 2, 3, 1, 2, 3, 1, 2, 3]
);
// 0.75
$covariance = Stat::covariance(
    [1, 2, 3, 4, 5, 6, 7, 8, 9],
    [9, 8, 7, 6, 5, 4, 3, 2, 1]
);
// -7.5

Stat::correlation ( array $x , array $y )

Return the Pearson’s correlation coefficient for two inputs. Pearson’s correlation coefficient r takes values between -1 and +1. It measures the strength and direction of the linear relationship, where +1 means very strong, positive linear relationship, -1 very strong, negative linear relationship, and 0 no linear relationship.

$correlation = Stat::correlation(
    [1, 2, 3, 4, 5, 6, 7, 8, 9],
    [1, 2, 3, 4, 5, 6, 7, 8, 9]
);
// 1.0
$correlation = Stat::correlation(
    [1, 2, 3, 4, 5, 6, 7, 8, 9],
    [9, 8, 7, 6, 5, 4, 3, 2, 1]
);
// -1.0

Stat::linearRegression ( array $x , array $y )

Return the slope and intercept of simple linear regression parameters estimated using ordinary least squares. Simple linear regression describes the relationship between an independent variable $x and a dependent variable $y in terms of a linear function.

$years = [1971, 1975, 1979, 1982, 1983];
$films_total = [1, 2, 3, 4, 5]
list($slope, $intercept) = Stat::linearRegression(
    $years,
    $films_total
);
// 0.31
// -610.18

What happens in 2022, according to the samples above?

round($slope * 2022 + $intercept);
// 17.0

Freq class

With Statistics package you can calculate frequency table. A frequency table lists the frequency of various outcomes in a sample. Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval.

Freq::frequencies( array $data )

use HiFolks\Statistics\Freq;

$fruits = ['🍈', '🍈', '🍈', '🍉','🍉','🍉','🍉','🍉','🍌'];
$freqTable = Freq::frequencies($fruits);
print_r($freqTable);

You can see the frequency table as an array:

Array
(
    [🍈] => 3
    [🍉] => 5
    [🍌] => 1
)

Freq::relativeFrequencies( array $data )

You can retrieve the frequency table in relative format (percentage):

$freqTable = Freq::relativeFrequencies($fruits, 2);
print_r($freqTable);

You can see the frequency table as an array with percentage of the occurrences:

Array
(
    [🍈] => 33.33
    [🍉] => 55.56
    [🍌] => 11.11
)

Freq::frequencyTableBySize( array $data , $size)

If you want to create a frequency table based on class (ranges of values) you can use frequencyTableBySize. The first parameter is the array, and the second one is the size of classes.

Calculate the frequency table with classes. Each group size is 4

$data = [1,1,1,4,4,5,5,5,6,7,8,8,8,9,9,9,9,9,9,10,10,11,12,12,
    13,14,14,15,15,16,16,16,16,17,17,17,18,18, ];
$result = \HiFolks\Statistics\Freq::frequencyTableBySize($data, 4);
print_r($result);
/*
Array
(
    [1] => 5
    [5] => 8
    [9] => 11
    [13] => 9
    [17] => 5
)
 */

Freq::frequencyTable()

If you want to create a frequency table based on class (ranges of values) you can use frequencyTable. The first parameter is the array, and the second one is the number of classes.

Calculate the frequency table with 5 classes.

$data = [1,1,1,4,4,5,5,5,6,7,8,8,8,9,9,9,9,9,9,10,10,11,12,12,
    13,14,14,15,15,16,16,16,16,17,17,17,18,18, ];
$result = \HiFolks\Statistics\Freq::frequencyTable($data, 5);
print_r($result);
/*
Array
(
    [1] => 5
    [5] => 8
    [9] => 11
    [13] => 9
    [17] => 5
)
 */

Statistics class

The methods provided by the Freq and the Stat classes are mainly static methods. If you prefer to use an object instance for calculating statistics you can choose to use an instance of the Statistics class. So for calling the statistics methods, you can use your object instance of the Statistics class.

For example for calculating the mean, you can obtain the Statistics object via the make() static method, and then use the new object $stat like in the following example:

$stat = HiFolks\Statistics\Statistics::make(
    [3,5,4,7,5,2]
);
echo $stat->valuesToString(5) . PHP_EOL;
// 2,3,4,5,5
echo "Mean              : " . $stat->mean() . PHP_EOL;
// Mean              : 4.3333333333333
echo "Count             : " . $stat->count() . PHP_EOL;
// Count             : 6
echo "Median            : " . $stat->median() . PHP_EOL;
// Median            : 4.5
echo "First Quartile  : " . $stat->firstQuartile() . PHP_EOL;
// First Quartile  : 2.5
echo "Third Quartile : " . $stat->thirdQuartile() . PHP_EOL;
// Third Quartile : 5
echo "Mode              : " . $stat->mode() . PHP_EOL;
// Mode              : 5

Calculate Frequency Table

The Statistics packages have some methods for generating Frequency Table:

  • frequencies(): a frequency is the number of times a value of the data occurs;
  • relativeFrequencies(): a relative frequency is the ratio (fraction or proportion) of the number of times a value of the data occurs in the set of all outcomes to the total number of outcomes;
  • cumulativeFrequencies(): is the accumulation of the previous relative frequencies;
  • cumulativeRelativeFrequencies(): is the accumulation of the previous relative ratio.
use HiFolks\Statistics\Statistics;

$s = Statistics::make(
    [98, 90, 70,18,92,92,55,83,45,95,88,76]
);
$a = $s->frequencies();
print_r($a);
/*
Array
(
    [18] => 1
    [45] => 1
    [55] => 1
    [70] => 1
    [76] => 1
    [83] => 1
    [88] => 1
    [90] => 1
    [92] => 2
    [95] => 1
    [98] => 1
)
 */

$a = $s->relativeFrequencies();
print_r($a);
/*
Array
(
    [18] => 8.3333333333333
    [45] => 8.3333333333333
    [55] => 8.3333333333333
    [70] => 8.3333333333333
    [76] => 8.3333333333333
    [83] => 8.3333333333333
    [88] => 8.3333333333333
    [90] => 8.3333333333333
    [92] => 16.666666666667
    [95] => 8.3333333333333
    [98] => 8.3333333333333
)
 */

NormalDist class

The NormalDist class provides an easy way to work with normal distributions in PHP. It allows you to calculate probabilities and densities for a given mean (μ\muμ) and standard deviation (σ\sigmaσ).

Key features

  • Define a normal distribution with mean (μ\muμ) and standard deviation (σ\sigmaσ).
  • Calculate the Probability Density Function (PDF) to evaluate the relative likelihood of a value.
  • Calculate the Cumulative Distribution Function (CDF) to determine the probability of a value or lower.

Class constructor

$normalDist = new NormalDist(float $mu = 0.0, float $sigma = 1.0);
  • $mu: The mean (default = 0.0).
  • $sigma: The standard deviation (default = 1.0).
  • Throws an exception if $sigma is non-positive.

Methods

Creating a normal distribution instance from sample data

The fromSamples() static method creates a normal distribution instance with mu and sigma parameters estimated from the sample data.

Example:

$samples = [2.5, 3.1, 2.1, 2.4, 2.7, 3.5];
$normalDist = NormalDist::fromSamples($samples);
$normalDist->getMeanRounded(5); // 2.71667
$normalDist->getSigmaRounded(5); // 0.50761

Probability Density Function pdf($x)

Calculates the Probability Density Function at a given value xxx:

$normalDist->pdf(float $x): float
  • Input: the value $x at which to evaluate the PDF.
  • Output: the relative likelihood of $x in the distribution.

Example:

$normalDist = new NormalDist(10.0, 2.0);
echo $normalDist->pdf(12.0); // Output: 0.12098536225957168

Cumulative Distribution Function cdf($x)

Calculates the Cumulative Distribution Function at a given value $x:

$normalDist->cdf(float $x): float
  • Input: the value $x at which to evaluate the CDF.
  • Output: the probability that a random variable $x is less than or equal to $x.

Example:

$normalDist = new NormalDist(10.0, 2.0);
echo $normalDist->cdf(12.0); // Output: 0.8413447460685429

Calculating both, CDF and PDF:

$normalDist = new NormalDist(10.0, 2.0);

// Calculate PDF at x = 12
$pdf = $normalDist->pdf(12.0);
echo "PDF at x = 12: $pdf\n"; // Output: 0.12098536225957168

// Calculate CDF at x = 12
$cdf = $normalDist->cdf(12.0);
echo "CDF at x = 12: $cdf\n"; // Output: 0.8413447460685429

Combining a normal distribution via add() method

The add() method allows you to combine a NormalDist instance with either a constant or another NormalDist object. This operation supports mathematical transformations and the combination of distributions.

The use cases are:

  • Shifting a distribution: add a constant to shift the mean, useful in translating data.
  • Combining distributions: combine independent or jointly normally distributed variables, commonly used in statistics and probability.
$birth_weights = NormalDist::fromSamples([2.5, 3.1, 2.1, 2.4, 2.7, 3.5]);
$drug_effects = new NormalDist(0.4, 0.15);
$combined = $birth_weights->add($drug_effects);

$combined->getMeanRounded(1); // 3.1
$combined->getSigmaRounded(1); // 0.5

$birth_weights->getMeanRounded(5); // 2.71667
$birth_weights->getSigmaRounded(5); // 0.50761

Scaling a normal distribution by a costant via multiply() method

The multiply() method for NormalDist multiplies both the mean (mu) and standard deviation (sigma) by a constant. This method is useful for rescaling distributions, such as when changing measurement units. The standard deviation is scaled by the absolute value of the constant to ensure it remains non-negative.

The method does not modify the existing object but instead returns a new NormalDist instance with the updated values.

Use Cases:

  • Rescaling distributions: useful when changing units (e.g., from meters to kilometers, or Celsius to Farenhait).
  • Transforming data: apply proportional scaling to statistical data.
$tempFebruaryCelsius = new NormalDist(5, 2.5); # Celsius
$tempFebFahrenheit = $tempFebruaryCelsius->multiply(9 / 5)->add(32); # Fahrenheit
$tempFebFahrenheit->getMeanRounded(1); // 41.0
$tempFebFahrenheit->getSigmaRounded(1); // 4.5

References for NormalDist

This class is inspired by Python’s statistics.NormalDist and aims to provide similar functionality for PHP users. (Work in Progress)

Testing

composer run test           Runs the test script
composer run test-coverage  Runs the test-coverage script
composer run format         Runs the format script
composer run static-code    Runs the static-code script
composer run all-check      Runs the all-check script

Changelog

Please see CHANGELOG for more information on what has changed recently.

Contributing

Please see CONTRIBUTING for details.

Security Vulnerabilities

Please review our security policy on how to report security vulnerabilities.

Credits

License

The MIT License (MIT). Please see License File for more information.

About

PHP package that provides functions for calculating mathematical statistics of numeric data.

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages