forked from xuanzic/NeMo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
NeMo 1.0: upcycle dense to moe (NVIDIA#11002)
* upcycle dense to moe Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> * fix(?) path when saving Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> * bot happy Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> * bot happy xuanzic#2 Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> * add unwrap method Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> * Apply isort and black reformatting Signed-off-by: akoumpa <akoumpa@users.noreply.github.com> * move file Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> --------- Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> Signed-off-by: akoumpa <akoumpa@users.noreply.github.com> Co-authored-by: akoumpa <akoumpa@users.noreply.github.com>
- Loading branch information
Showing
1 changed file
with
115 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
r""" | ||
Conversion script to convert NeMo Mistral-7B checkpoints into HuggingFace checkpoint. | ||
Example to run this conversion script: | ||
python3 upcycle_dense_to_moe.py \ | ||
--model <path_to_nemo_checkpoints_folder> \ | ||
--num-experts 8 \ | ||
--output_path <path_to_output_hf_file> | ||
""" | ||
|
||
from argparse import ArgumentParser | ||
from pathlib import Path | ||
|
||
import torch | ||
import torch.nn | ||
from pytorch_lightning.trainer.trainer import Trainer | ||
|
||
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel | ||
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy, NLPSaveRestoreConnector | ||
from nemo.utils import logging | ||
|
||
|
||
def get_args(): | ||
parser = ArgumentParser() | ||
parser.add_argument("--model", type=str, default=None, required=True, help="Path to NeMo checkpoint") | ||
parser.add_argument( | ||
"--output-path", type=str, default='', required=False, help="Path to NeMo save upcycled checkpoint" | ||
) | ||
parser.add_argument( | ||
"--num-experts", type=int, default=8, required=True, help="Number of experts to use in upcycled model." | ||
) | ||
args = parser.parse_args() | ||
assert isinstance(args.num_experts, int) | ||
assert args.num_experts > 1, "Expected --num-experts to be greater-than 1." | ||
if args.output_path == '': | ||
args.output_path = args.model + f'_upcycled_num_exp{args.num_experts}.nemo' | ||
return args | ||
|
||
|
||
def make_moe_config_from_dense(config, num_experts=8): | ||
from copy import deepcopy | ||
|
||
moe_config = deepcopy(config) | ||
moe_config['num_moe_experts'] = num_experts | ||
return moe_config | ||
|
||
|
||
def unwrap(model): | ||
tmp = model | ||
while hasattr(tmp, 'module'): | ||
tmp = tmp.module | ||
return tmp | ||
|
||
|
||
def upcycle(in_file, num_experts, cpu_only=True) -> None: | ||
""" | ||
Upcycle dense checkpoint to MoE. | ||
""" | ||
|
||
logging.info(f'Loading NeMo checkpoint from: {in_file}') | ||
|
||
dummy_trainer = Trainer(devices=1, accelerator='cpu', strategy=NLPDDPStrategy()) | ||
|
||
# Load dense model | ||
model_config = MegatronGPTModel.restore_from(in_file, trainer=dummy_trainer, return_config=True) | ||
model_config.tensor_model_parallel_size = 1 | ||
model_config.pipeline_model_parallel_size = 1 | ||
model_config.sequence_parallel = False | ||
if cpu_only: | ||
map_location = torch.device('cpu') | ||
model_config.use_cpu_initialization = True | ||
else: | ||
map_location = None | ||
model_config.perform_initialization = False | ||
dense_model = MegatronGPTModel.restore_from( | ||
in_file, trainer=dummy_trainer, override_config_path=model_config, map_location=map_location | ||
) | ||
|
||
# Make upcycled config | ||
moe_config = make_moe_config_from_dense(model_config, num_experts) | ||
# print(moe_config) | ||
# quit() | ||
dummy_trainer2 = Trainer(devices=1, accelerator='cpu', strategy=NLPDDPStrategy()) | ||
moe_model = MegatronGPTModel(moe_config, trainer=dummy_trainer2) | ||
|
||
# convert state dict dense -> MoE | ||
from megatron.core.transformer.moe.upcycling_utils import upcycle_state_dict | ||
|
||
moe_state_dict = upcycle_state_dict([unwrap(moe_model.model)], [unwrap(dense_model.model)]) | ||
moe_model.model.module.load_state_dict(moe_state_dict['model']) | ||
moe_model._save_restore_connector = NLPSaveRestoreConnector() | ||
# hack | ||
if Path(args.model).is_dir(): | ||
moe_model._save_restore_connector._model_extracted_dir = args.model | ||
|
||
moe_model.save_to(args.output_path) | ||
|
||
|
||
if __name__ == '__main__': | ||
args = get_args() | ||
upcycle(args.model, args.num_experts) | ||
logging.info(f'Upcycled checkpoint saved to: {args.output_path}') |