Skip to content

HuttleyLab/geneticdistance

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Instructions for reproducing results of Kaehler et al

Authors: Benjamin D. Kaehler
Von Bing Yap
Rongli Zhang
and Gavin A. Huttley

Contents of the Repository

  1. src contains two command line scripts that perform all model fitting and goodness-of-fit testing.
  2. figures contains several scripts that process the output from the executables in src and produce figures and statistics.
  3. test contains unit tests.
  4. lib contains local library scripts.

Dependencies

Required

Optional

  • mpi4py 1.3.1
  • nose 1.3.1
  • rpy2 2.4.3
  • R 3.1.1
    • ggplot2 1.0.0
    • stats 3.1.1
    • quantreg 5.05

Installing this code

All code is written to run in place.

Checking this code installed correctly

The unit tests will confirm that the model fitting and goodness-of-fit scripts are present with all the necessary requirements. From the top directory run:

$ nosetests

or:

$ mpiexec -n 3 nosetests

to confirm that the MPI functionality is working properly.

Reproduce the figures (plots and numbers) from the paper

  1. Download the multiple sequence alignments from Dryad.

  2. Move the microbial multiple sequence alignments into the directory ~/Data/greengenes/uniform/

  3. Move the mammal multiple sequence alignments into the directory ~/Data/release-68/exons/aligned/

  4. Move the mitochondrial multiple sequence alignments into the directory ~/Data/release-68/mtDNA/aligned/

  5. Change your working directory to src and run the following commands. (Launch theses scripts using MPI with a few hundred processes, or they will take a very, very long time to complete.):

    $ python nonstationary_lengths.py -i ~/Data/release-68/exons/aligned -o ~/revisions/release-68/exons/aligned/general -l ~/revisions/release-68/exons/aligned/general/nsl.log -c 3 -u 20 -F seq_fit
    $ python nonstationary_lengths.py -i ~/Data/release-68/exons/aligned -o ~/revisions/release-68/exons/aligned/gtrplusgamma -l ~/revisions/release-68/exons/aligned/gtrplusgamma/nsl.log -c 3 -u 20 -F hetero_fit
    $ python nonstationary_lengths.py -i ~/Data/release-68/exons/aligned -o ~/revisions/release-68/exons/aligned/clock/general -l ~/revisions/release-68/exons/aligned/clock/general/nsl.log -c 3 -u 20 -F clock_fit -O Opossum
    $ python nonstationary_lengths.py -i ~/Data/release-68/exons/aligned -o ~/revisions/release-68/exons/aligned/clock/gtrplusgamma -l ~/revisions/release-68/exons/aligned/clock/gtrplusgamma/nsl.log -c 3 -u 20 -F hetero_clock_fit -O Opossum
    $ python nonstationary_lengths.py -i ~/Data/release-68/mtDNA/aligned -o ~/revisions/release-68/mtDNA/aligned/general -l ~/revisions/release-68/mtDNA/aligned/general/nsl.log -u 20 -F seq_fit
    $ python nonstationary_lengths.py -i ~/Data/release-68/mtDNA/aligned -o ~/revisions/release-68/mtDNA/aligned/gtrplusgamma -l ~/revisions/release-68/mtDNA/aligned/gtrplusgamma/nsl.log -u 20 -F hetero_fit
    $ python nonstationary_lengths.py -i ~/Data/greengenes/uniform -o ~/revisions/greengenes/uniform/general -l ~/revisions/greengenes/uniform/general/nsl.log -u 20 -F seq_fit
    $ python nonstationary_lengths.py -i ~/Data/greengenes/uniform/aligned -o ~/revisions/greengenes/uniform/gtrplusgamma -l ~/revisions/greengenes/uniform/gtrplusgamma/nsl.log -u 20 -F hetero_fit
    
    $ python g_stats.py -o ~/revisions/release-68/exons/aligned/general -l ~/revisions/release-68/exons/aligned/general/gs.log -N 100 -u 20 -P 1 -F seq_fit
    $ python g_stats.py -o ~/revisions/release-68/exons/aligned/general -l ~/revisions/release-68/exons/aligned/general/gs.log -N 100 -u 20 -P 0 -F seq_fit
    $ python g_stats.py -o ~/revisions/release-68/exons/aligned/gtrplusgamma -l ~/revisions/release-68/exons/aligned/gtrplusgamma/gs.log -N 100 -u 20 -P 0 -F hetero_fit
    $ python g_stats.py -o ~/revisions/release-68/exons/aligned/clock/general -l ~/revisions/release-68/exons/aligned/clock/general/gs.log -N 100 -u 20 -P 3 -F clock_fit -O Opossum
    $ python g_stats.py -o ~/revisions/release-68/mtDNA/aligned/general -l ~/revisions/release-68/mtDNA/aligned/general/gs.log -N 100 -u 20 -P 1 -F seq_fit
    $ python g_stats.py -o ~/revisions/release-68/mtDNA/aligned/general -l ~/revisions/release-68/mtDNA/aligned/general/gs.log -N 100 -u 20 -P 0 -F seq_fit
    $ python g_stats.py -o ~/revisions/release-68/mtDNA/aligned/gtrplusgamma -l ~/revisions/release-68/mtDNA/aligned/gtrplusgamma/gs.log -N 100 -u 20 -P 0 -F hetero_fit
    $ python g_stats.py -o ~/revisions/greengenes/uniform/general -l ~/revisions/greengenes/uniform/general/gs.log -N 100 -u 20 -P 1 -F seq_fit
    $ python g_stats.py -o ~/revisions/greengenes/uniform/general -l ~/revisions/greengenes/uniform/general/gs.log -N 100 -u 20 -P 0 -F seq_fit
    $ python g_stats.py -o ~/revisions/greengenes/uniform/gtrplusgamma -l ~/revisions/greengenes/uniform/gtrplusgamma/gs.log -N 100 -u 20 -P 0 -F hetero_fit
    
  6. Change your working directory to figures and run generate.sh. The plots will be saved in the figures directory as pdf files and the numbers will be output to screen.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published