forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 6
blah blah #40
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
blah blah #40
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
HyukjinKwon
pushed a commit
that referenced
this pull request
Sep 29, 2023
…edExecutorBackend
### What changes were proposed in this pull request?
Fix a subtle thread-safety issue with CoarseGrainedExecutorBackend where an executor process randomly gets stuck
### Why are the changes needed?
For each executor, the single-threaded dispatcher can run into an "infinite loop" (as explained in the SPARK-45227). Once an executor process runs into a state, it'd stop launching tasks from the driver or reporting task status back.
### Does this PR introduce _any_ user-facing change?
No
### How was this patch tested?
```
$ build/mvn package -DskipTests -pl core
$ build/mvn -Dtest=none -DwildcardSuites=org.apache.spark.executor.CoarseGrainedExecutorBackendSuite test
```
### Was this patch authored or co-authored using generative AI tooling?
No
******************************************************************************
**_Please feel free to skip reading unless you're interested in details_**
******************************************************************************
### Symptom
Our Spark 3 app running on EMR 6.10.0 with Spark 3.3.1 got stuck in the very last step of writing a data frame to S3 by calling `df.write`. Looking at Spark UI, we saw that an executor process hung over 1 hour. After we manually killed the executor process, the app succeeded. Note that the same EMR cluster with two worker nodes was able to run the same app without any issue before and after the incident.
Below is what's observed from relevant container logs and thread dump.
- A regular task that's sent to the executor, which also reported back to the driver upon the task completion.
```
$zgrep 'task 150' container_1694029806204_12865_01_000001/stderr.gz
23/09/12 18:13:55 INFO TaskSetManager: Starting task 150.0 in stage 23.0 (TID 923) (ip-10-0-185-107.ec2.internal, executor 3, partition 150, NODE_LOCAL, 4432 bytes) taskResourceAssignments Map()
23/09/12 18:13:55 INFO TaskSetManager: Finished task 150.0 in stage 23.0 (TID 923) in 126 ms on ip-10-0-185-107.ec2.internal (executor 3) (16/200)
$zgrep ' 923' container_1694029806204_12865_01_000004/stderr.gz
23/09/12 18:13:55 INFO YarnCoarseGrainedExecutorBackend: Got assigned task 923
$zgrep 'task 150' container_1694029806204_12865_01_000004/stderr.gz
23/09/12 18:13:55 INFO Executor: Running task 150.0 in stage 23.0 (TID 923)
23/09/12 18:13:55 INFO Executor: Finished task 150.0 in stage 23.0 (TID 923). 4495 bytes result sent to driver
```
- Another task that's sent to the executor but didn't get launched since the single-threaded dispatcher was stuck (presumably in an "infinite loop" as explained later).
```
$zgrep 'task 153' container_1694029806204_12865_01_000001/stderr.gz
23/09/12 18:13:55 INFO TaskSetManager: Starting task 153.0 in stage 23.0 (TID 924) (ip-10-0-185-107.ec2.internal, executor 3, partition 153, NODE_LOCAL, 4432 bytes) taskResourceAssignments Map()
$zgrep ' 924' container_1694029806204_12865_01_000004/stderr.gz
23/09/12 18:13:55 INFO YarnCoarseGrainedExecutorBackend: Got assigned task 924
$zgrep 'task 153' container_1694029806204_12865_01_000004/stderr.gz
>> note that the above command has no matching result, indicating that task 153.0 in stage 23.0 (TID 924) was never launched
```
- Thread dump shows that the dispatcher-Executor thread has the following stack trace.
```
"dispatcher-Executor" #40 daemon prio=5 os_prio=0 tid=0x0000ffff98e37800 nid=0x1aff runnable [0x0000ffff73bba000]
java.lang.Thread.State: RUNNABLE
at scala.runtime.BoxesRunTime.equalsNumObject(BoxesRunTime.java:142)
at scala.runtime.BoxesRunTime.equals2(BoxesRunTime.java:131)
at scala.runtime.BoxesRunTime.equals(BoxesRunTime.java:123)
at scala.collection.mutable.HashTable.elemEquals(HashTable.scala:365)
at scala.collection.mutable.HashTable.elemEquals$(HashTable.scala:365)
at scala.collection.mutable.HashMap.elemEquals(HashMap.scala:44)
at scala.collection.mutable.HashTable.findEntry0(HashTable.scala:140)
at scala.collection.mutable.HashTable.findOrAddEntry(HashTable.scala:169)
at scala.collection.mutable.HashTable.findOrAddEntry$(HashTable.scala:167)
at scala.collection.mutable.HashMap.findOrAddEntry(HashMap.scala:44)
at scala.collection.mutable.HashMap.put(HashMap.scala:126)
at scala.collection.mutable.HashMap.update(HashMap.scala:131)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$$anonfun$receive$1.applyOrElse(CoarseGrainedExecutorBackend.scala:200)
at org.apache.spark.rpc.netty.Inbox.$anonfun$process$1(Inbox.scala:115)
at org.apache.spark.rpc.netty.Inbox$$Lambda$323/1930826709.apply$mcV$sp(Unknown Source)
at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:213)
at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:100)
at org.apache.spark.rpc.netty.MessageLoop.org$apache$spark$rpc$netty$MessageLoop$$receiveLoop(MessageLoop.scala:75)
at org.apache.spark.rpc.netty.MessageLoop$$anon$1.run(MessageLoop.scala:41)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
```
### Relevant code paths
Within an executor process, there's a [dispatcher thread](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/rpc/netty/MessageLoop.scala#L170) dedicated to CoarseGrainedExecutorBackend(a single RPC endpoint) that launches tasks scheduled by the driver. Each task is run on a TaskRunner thread backed by a thread pool created for the executor. The TaskRunner thread and the dispatcher thread are different. However, they read and write a common object (i.e., taskResources) that's a mutable hashmap without thread-safety, in [Executor](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/executor/Executor.scala#L561) and [CoarseGrainedExecutorBackend](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala#L189), respectively.
### What's going on?
Based on the above observations, our hypothesis is that the dispatcher thread runs into an "infinite loop" due to a race condition when two threads access the same hashmap object. For illustration purpose, let's consider the following scenario where two threads (Thread 1 and Thread 2) access a hash table without thread-safety
- Thread 1 sees A.next = B, but then yields execution to Thread 2
<img src="https://issues.apache.org/jira/secure/attachment/13063040/13063040_hashtable1.png" width="400">
- Thread 2 triggers a resize operation resulting in B.next = A (Note that hashmap doesn't care about ordering), and then yields execution to Thread 1.
<img src="https://issues.apache.org/jira/secure/attachment/13063041/13063041_hashtable2.png" width="400">
- After taking over CPU, Thread 1 would run into an "infinite loop" when traversing the list in the last bucket, given A.next = B and B.next = A in its view.
Closes apache#43021 from xiongbo-sjtu/master.
Authored-by: Bo Xiong <xiongbo@amazon.com>
Signed-off-by: Mridul Muralidharan <mridul<at>gmail.com>
HyukjinKwon
pushed a commit
that referenced
this pull request
Oct 5, 2023
…edExecutorBackend
### What changes were proposed in this pull request?
Fix a subtle thread-safety issue with CoarseGrainedExecutorBackend where an executor process randomly gets stuck
### Why are the changes needed?
For each executor, the single-threaded dispatcher can run into an "infinite loop" (as explained in the SPARK-45227). Once an executor process runs into a state, it'd stop launching tasks from the driver or reporting task status back.
### Does this PR introduce _any_ user-facing change?
No
### How was this patch tested?
```
$ build/mvn package -DskipTests -pl core
$ build/mvn -Dtest=none -DwildcardSuites=org.apache.spark.executor.CoarseGrainedExecutorBackendSuite test
```
### Was this patch authored or co-authored using generative AI tooling?
No
******************************************************************************
**_Please feel free to skip reading unless you're interested in details_**
******************************************************************************
### Symptom
Our Spark 3 app running on EMR 6.10.0 with Spark 3.3.1 got stuck in the very last step of writing a data frame to S3 by calling `df.write`. Looking at Spark UI, we saw that an executor process hung over 1 hour. After we manually killed the executor process, the app succeeded. Note that the same EMR cluster with two worker nodes was able to run the same app without any issue before and after the incident.
Below is what's observed from relevant container logs and thread dump.
- A regular task that's sent to the executor, which also reported back to the driver upon the task completion.
```
$zgrep 'task 150' container_1694029806204_12865_01_000001/stderr.gz
23/09/12 18:13:55 INFO TaskSetManager: Starting task 150.0 in stage 23.0 (TID 923) (ip-10-0-185-107.ec2.internal, executor 3, partition 150, NODE_LOCAL, 4432 bytes) taskResourceAssignments Map()
23/09/12 18:13:55 INFO TaskSetManager: Finished task 150.0 in stage 23.0 (TID 923) in 126 ms on ip-10-0-185-107.ec2.internal (executor 3) (16/200)
$zgrep ' 923' container_1694029806204_12865_01_000004/stderr.gz
23/09/12 18:13:55 INFO YarnCoarseGrainedExecutorBackend: Got assigned task 923
$zgrep 'task 150' container_1694029806204_12865_01_000004/stderr.gz
23/09/12 18:13:55 INFO Executor: Running task 150.0 in stage 23.0 (TID 923)
23/09/12 18:13:55 INFO Executor: Finished task 150.0 in stage 23.0 (TID 923). 4495 bytes result sent to driver
```
- Another task that's sent to the executor but didn't get launched since the single-threaded dispatcher was stuck (presumably in an "infinite loop" as explained later).
```
$zgrep 'task 153' container_1694029806204_12865_01_000001/stderr.gz
23/09/12 18:13:55 INFO TaskSetManager: Starting task 153.0 in stage 23.0 (TID 924) (ip-10-0-185-107.ec2.internal, executor 3, partition 153, NODE_LOCAL, 4432 bytes) taskResourceAssignments Map()
$zgrep ' 924' container_1694029806204_12865_01_000004/stderr.gz
23/09/12 18:13:55 INFO YarnCoarseGrainedExecutorBackend: Got assigned task 924
$zgrep 'task 153' container_1694029806204_12865_01_000004/stderr.gz
>> note that the above command has no matching result, indicating that task 153.0 in stage 23.0 (TID 924) was never launched
```
- Thread dump shows that the dispatcher-Executor thread has the following stack trace.
```
"dispatcher-Executor" #40 daemon prio=5 os_prio=0 tid=0x0000ffff98e37800 nid=0x1aff runnable [0x0000ffff73bba000]
java.lang.Thread.State: RUNNABLE
at scala.runtime.BoxesRunTime.equalsNumObject(BoxesRunTime.java:142)
at scala.runtime.BoxesRunTime.equals2(BoxesRunTime.java:131)
at scala.runtime.BoxesRunTime.equals(BoxesRunTime.java:123)
at scala.collection.mutable.HashTable.elemEquals(HashTable.scala:365)
at scala.collection.mutable.HashTable.elemEquals$(HashTable.scala:365)
at scala.collection.mutable.HashMap.elemEquals(HashMap.scala:44)
at scala.collection.mutable.HashTable.findEntry0(HashTable.scala:140)
at scala.collection.mutable.HashTable.findOrAddEntry(HashTable.scala:169)
at scala.collection.mutable.HashTable.findOrAddEntry$(HashTable.scala:167)
at scala.collection.mutable.HashMap.findOrAddEntry(HashMap.scala:44)
at scala.collection.mutable.HashMap.put(HashMap.scala:126)
at scala.collection.mutable.HashMap.update(HashMap.scala:131)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$$anonfun$receive$1.applyOrElse(CoarseGrainedExecutorBackend.scala:200)
at org.apache.spark.rpc.netty.Inbox.$anonfun$process$1(Inbox.scala:115)
at org.apache.spark.rpc.netty.Inbox$$Lambda$323/1930826709.apply$mcV$sp(Unknown Source)
at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:213)
at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:100)
at org.apache.spark.rpc.netty.MessageLoop.org$apache$spark$rpc$netty$MessageLoop$$receiveLoop(MessageLoop.scala:75)
at org.apache.spark.rpc.netty.MessageLoop$$anon$1.run(MessageLoop.scala:41)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
```
### Relevant code paths
Within an executor process, there's a [dispatcher thread](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/rpc/netty/MessageLoop.scala#L170) dedicated to CoarseGrainedExecutorBackend(a single RPC endpoint) that launches tasks scheduled by the driver. Each task is run on a TaskRunner thread backed by a thread pool created for the executor. The TaskRunner thread and the dispatcher thread are different. However, they read and write a common object (i.e., taskResources) that's a mutable hashmap without thread-safety, in [Executor](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/executor/Executor.scala#L561) and [CoarseGrainedExecutorBackend](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala#L189), respectively.
### What's going on?
Based on the above observations, our hypothesis is that the dispatcher thread runs into an "infinite loop" due to a race condition when two threads access the same hashmap object. For illustration purpose, let's consider the following scenario where two threads (Thread 1 and Thread 2) access a hash table without thread-safety
- Thread 1 sees A.next = B, but then yields execution to Thread 2
<img src="https://issues.apache.org/jira/secure/attachment/13063040/13063040_hashtable1.png" width="400">
- Thread 2 triggers a resize operation resulting in B.next = A (Note that hashmap doesn't care about ordering), and then yields execution to Thread 1.
<img src="https://issues.apache.org/jira/secure/attachment/13063041/13063041_hashtable2.png" width="400">
- After taking over CPU, Thread 1 would run into an "infinite loop" when traversing the list in the last bucket, given A.next = B and B.next = A in its view.
Closes apache#43021 from xiongbo-sjtu/master.
Authored-by: Bo Xiong <xiongbo@amazon.com>
Signed-off-by: Mridul Muralidharan <mridul<at>gmail.com>
(cherry picked from commit 8e6b160)
Signed-off-by: Mridul Muralidharan <mridulatgmail.com>
HyukjinKwon
pushed a commit
that referenced
this pull request
Nov 17, 2023
…edExecutorBackend
### What changes were proposed in this pull request?
Fix a subtle thread-safety issue with CoarseGrainedExecutorBackend where an executor process randomly gets stuck
### Why are the changes needed?
For each executor, the single-threaded dispatcher can run into an "infinite loop" (as explained in the SPARK-45227). Once an executor process runs into a state, it'd stop launching tasks from the driver or reporting task status back.
### Does this PR introduce _any_ user-facing change?
No
### How was this patch tested?
```
$ build/mvn package -DskipTests -pl core
$ build/mvn -Dtest=none -DwildcardSuites=org.apache.spark.executor.CoarseGrainedExecutorBackendSuite test
```
### Was this patch authored or co-authored using generative AI tooling?
No
******************************************************************************
**_Please feel free to skip reading unless you're interested in details_**
******************************************************************************
### Symptom
Our Spark 3 app running on EMR 6.10.0 with Spark 3.3.1 got stuck in the very last step of writing a data frame to S3 by calling `df.write`. Looking at Spark UI, we saw that an executor process hung over 1 hour. After we manually killed the executor process, the app succeeded. Note that the same EMR cluster with two worker nodes was able to run the same app without any issue before and after the incident.
Below is what's observed from relevant container logs and thread dump.
- A regular task that's sent to the executor, which also reported back to the driver upon the task completion.
```
$zgrep 'task 150' container_1694029806204_12865_01_000001/stderr.gz
23/09/12 18:13:55 INFO TaskSetManager: Starting task 150.0 in stage 23.0 (TID 923) (ip-10-0-185-107.ec2.internal, executor 3, partition 150, NODE_LOCAL, 4432 bytes) taskResourceAssignments Map()
23/09/12 18:13:55 INFO TaskSetManager: Finished task 150.0 in stage 23.0 (TID 923) in 126 ms on ip-10-0-185-107.ec2.internal (executor 3) (16/200)
$zgrep ' 923' container_1694029806204_12865_01_000004/stderr.gz
23/09/12 18:13:55 INFO YarnCoarseGrainedExecutorBackend: Got assigned task 923
$zgrep 'task 150' container_1694029806204_12865_01_000004/stderr.gz
23/09/12 18:13:55 INFO Executor: Running task 150.0 in stage 23.0 (TID 923)
23/09/12 18:13:55 INFO Executor: Finished task 150.0 in stage 23.0 (TID 923). 4495 bytes result sent to driver
```
- Another task that's sent to the executor but didn't get launched since the single-threaded dispatcher was stuck (presumably in an "infinite loop" as explained later).
```
$zgrep 'task 153' container_1694029806204_12865_01_000001/stderr.gz
23/09/12 18:13:55 INFO TaskSetManager: Starting task 153.0 in stage 23.0 (TID 924) (ip-10-0-185-107.ec2.internal, executor 3, partition 153, NODE_LOCAL, 4432 bytes) taskResourceAssignments Map()
$zgrep ' 924' container_1694029806204_12865_01_000004/stderr.gz
23/09/12 18:13:55 INFO YarnCoarseGrainedExecutorBackend: Got assigned task 924
$zgrep 'task 153' container_1694029806204_12865_01_000004/stderr.gz
>> note that the above command has no matching result, indicating that task 153.0 in stage 23.0 (TID 924) was never launched
```
- Thread dump shows that the dispatcher-Executor thread has the following stack trace.
```
"dispatcher-Executor" #40 daemon prio=5 os_prio=0 tid=0x0000ffff98e37800 nid=0x1aff runnable [0x0000ffff73bba000]
java.lang.Thread.State: RUNNABLE
at scala.runtime.BoxesRunTime.equalsNumObject(BoxesRunTime.java:142)
at scala.runtime.BoxesRunTime.equals2(BoxesRunTime.java:131)
at scala.runtime.BoxesRunTime.equals(BoxesRunTime.java:123)
at scala.collection.mutable.HashTable.elemEquals(HashTable.scala:365)
at scala.collection.mutable.HashTable.elemEquals$(HashTable.scala:365)
at scala.collection.mutable.HashMap.elemEquals(HashMap.scala:44)
at scala.collection.mutable.HashTable.findEntry0(HashTable.scala:140)
at scala.collection.mutable.HashTable.findOrAddEntry(HashTable.scala:169)
at scala.collection.mutable.HashTable.findOrAddEntry$(HashTable.scala:167)
at scala.collection.mutable.HashMap.findOrAddEntry(HashMap.scala:44)
at scala.collection.mutable.HashMap.put(HashMap.scala:126)
at scala.collection.mutable.HashMap.update(HashMap.scala:131)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$$anonfun$receive$1.applyOrElse(CoarseGrainedExecutorBackend.scala:200)
at org.apache.spark.rpc.netty.Inbox.$anonfun$process$1(Inbox.scala:115)
at org.apache.spark.rpc.netty.Inbox$$Lambda$323/1930826709.apply$mcV$sp(Unknown Source)
at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:213)
at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:100)
at org.apache.spark.rpc.netty.MessageLoop.org$apache$spark$rpc$netty$MessageLoop$$receiveLoop(MessageLoop.scala:75)
at org.apache.spark.rpc.netty.MessageLoop$$anon$1.run(MessageLoop.scala:41)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
```
### Relevant code paths
Within an executor process, there's a [dispatcher thread](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/rpc/netty/MessageLoop.scala#L170) dedicated to CoarseGrainedExecutorBackend(a single RPC endpoint) that launches tasks scheduled by the driver. Each task is run on a TaskRunner thread backed by a thread pool created for the executor. The TaskRunner thread and the dispatcher thread are different. However, they read and write a common object (i.e., taskResources) that's a mutable hashmap without thread-safety, in [Executor](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/executor/Executor.scala#L561) and [CoarseGrainedExecutorBackend](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala#L189), respectively.
### What's going on?
Based on the above observations, our hypothesis is that the dispatcher thread runs into an "infinite loop" due to a race condition when two threads access the same hashmap object. For illustration purpose, let's consider the following scenario where two threads (Thread 1 and Thread 2) access a hash table without thread-safety
- Thread 1 sees A.next = B, but then yields execution to Thread 2
<img src="https://issues.apache.org/jira/secure/attachment/13063040/13063040_hashtable1.png" width="400">
- Thread 2 triggers a resize operation resulting in B.next = A (Note that hashmap doesn't care about ordering), and then yields execution to Thread 1.
<img src="https://issues.apache.org/jira/secure/attachment/13063041/13063041_hashtable2.png" width="400">
- After taking over CPU, Thread 1 would run into an "infinite loop" when traversing the list in the last bucket, given A.next = B and B.next = A in its view.
Closes apache#43021 from xiongbo-sjtu/master.
Authored-by: Bo Xiong <xiongbo@amazon.com>
Signed-off-by: Mridul Muralidharan <mridul<at>gmail.com>
(cherry picked from commit 8e6b160)
Signed-off-by: Mridul Muralidharan <mridulatgmail.com>
HyukjinKwon
pushed a commit
that referenced
this pull request
Jan 23, 2025
…IN-subquery ### What changes were proposed in this pull request? This PR adds code to `RewritePredicateSubquery#apply` to explicitly handle the case where an `Aggregate` node contains an aggregate expression in the left-hand operand of an IN-subquery expression. The explicit handler moves the IN-subquery expressions out of the `Aggregate` and into a parent `Project` node. The `Aggregate` will continue to perform the aggregations that were used as an operand to the IN-subquery expression, but will not include the IN-subquery expression itself. After pulling up IN-subquery expressions into a Project node, `RewritePredicateSubquery#apply` is called again to handle the `Project` as a `UnaryNode`. The `Join` will now be inserted between the `Project` and the `Aggregate` node, and the join condition will use an attribute rather than an aggregate expression, e.g.: ``` Project [col1#32, exists#42 AS (sum(col2) IN (listquery()))#40] +- Join ExistenceJoin(exists#42), (sum(col2)#41L = c2#39L) :- Aggregate [col1#32], [col1#32, sum(col2#33) AS sum(col2)#41L] : +- LocalRelation [col1#32, col2#33] +- LocalRelation [c2#39L] ``` `sum(col2)#41L` in the above join condition, despite how it looks, is the name of the attribute, not an aggregate expression. ### Why are the changes needed? The following query fails: ``` create or replace temp view v1(c1, c2) as values (1, 2), (1, 3), (2, 2), (3, 7), (3, 1); create or replace temp view v2(col1, col2) as values (1, 2), (1, 3), (2, 2), (3, 7), (3, 1); select col1, sum(col2) in (select c2 from v1) from v2 group by col1; ``` It fails with this error: ``` [INTERNAL_ERROR] Cannot generate code for expression: sum(input[1, int, false]) SQLSTATE: XX000 ``` With SPARK_TESTING=1, it fails with this error: ``` [PLAN_VALIDATION_FAILED_RULE_IN_BATCH] Rule org.apache.spark.sql.catalyst.optimizer.RewritePredicateSubquery in batch RewriteSubquery generated an invalid plan: Special expressions are placed in the wrong plan: Aggregate [col1#11], [col1#11, first(exists#20, false) AS (sum(col2) IN (listquery()))#19] +- Join ExistenceJoin(exists#20), (sum(col2#12) = c2#18L) :- LocalRelation [col1#11, col2#12] +- LocalRelation [c2#18L] ``` The issue is that `RewritePredicateSubquery` builds a `Join` operator where the join condition contains an aggregate expression. The bug is in the handler for `UnaryNode` in `RewritePredicateSubquery#apply`, which adds a `Join` below the `Aggregate` and assumes that the left-hand operand of IN-subquery can be used in the join condition. This works fine for most cases, but not when the left-hand operand is an aggregate expression. This PR moves the offending IN-subqueries to a `Project` node, with the aggregates replaced by attributes referring to the aggregate expressions. The resulting join condition now uses those attributes rather than the actual aggregate expressions. ### Does this PR introduce _any_ user-facing change? No, other than allowing this type of query to succeed. ### How was this patch tested? New unit tests. ### Was this patch authored or co-authored using generative AI tooling? No. Closes apache#48627 from bersprockets/aggregate_in_set_issue. Authored-by: Bruce Robbins <bersprockets@gmail.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com>
HyukjinKwon
pushed a commit
that referenced
this pull request
May 20, 2025
…IN-subquery ### What changes were proposed in this pull request? This PR adds code to `RewritePredicateSubquery#apply` to explicitly handle the case where an `Aggregate` node contains an aggregate expression in the left-hand operand of an IN-subquery expression. The explicit handler moves the IN-subquery expressions out of the `Aggregate` and into a parent `Project` node. The `Aggregate` will continue to perform the aggregations that were used as an operand to the IN-subquery expression, but will not include the IN-subquery expression itself. After pulling up IN-subquery expressions into a Project node, `RewritePredicateSubquery#apply` is called again to handle the `Project` as a `UnaryNode`. The `Join` will now be inserted between the `Project` and the `Aggregate` node, and the join condition will use an attribute rather than an aggregate expression, e.g.: ``` Project [col1#32, exists#42 AS (sum(col2) IN (listquery()))#40] +- Join ExistenceJoin(exists#42), (sum(col2)#41L = c2#39L) :- Aggregate [col1#32], [col1#32, sum(col2#33) AS sum(col2)#41L] : +- LocalRelation [col1#32, col2#33] +- LocalRelation [c2#39L] ``` `sum(col2)#41L` in the above join condition, despite how it looks, is the name of the attribute, not an aggregate expression. ### Why are the changes needed? The following query fails: ``` create or replace temp view v1(c1, c2) as values (1, 2), (1, 3), (2, 2), (3, 7), (3, 1); create or replace temp view v2(col1, col2) as values (1, 2), (1, 3), (2, 2), (3, 7), (3, 1); select col1, sum(col2) in (select c2 from v1) from v2 group by col1; ``` It fails with this error: ``` [INTERNAL_ERROR] Cannot generate code for expression: sum(input[1, int, false]) SQLSTATE: XX000 ``` With SPARK_TESTING=1, it fails with this error: ``` [PLAN_VALIDATION_FAILED_RULE_IN_BATCH] Rule org.apache.spark.sql.catalyst.optimizer.RewritePredicateSubquery in batch RewriteSubquery generated an invalid plan: Special expressions are placed in the wrong plan: Aggregate [col1#11], [col1#11, first(exists#20, false) AS (sum(col2) IN (listquery()))#19] +- Join ExistenceJoin(exists#20), (sum(col2#12) = c2#18L) :- LocalRelation [col1#11, col2#12] +- LocalRelation [c2#18L] ``` The issue is that `RewritePredicateSubquery` builds a `Join` operator where the join condition contains an aggregate expression. The bug is in the handler for `UnaryNode` in `RewritePredicateSubquery#apply`, which adds a `Join` below the `Aggregate` and assumes that the left-hand operand of IN-subquery can be used in the join condition. This works fine for most cases, but not when the left-hand operand is an aggregate expression. This PR moves the offending IN-subqueries to a `Project` node, with the aggregates replaced by attributes referring to the aggregate expressions. The resulting join condition now uses those attributes rather than the actual aggregate expressions. ### Does this PR introduce _any_ user-facing change? No, other than allowing this type of query to succeed. ### How was this patch tested? New unit tests. ### Was this patch authored or co-authored using generative AI tooling? No. Closes apache#48627 from bersprockets/aggregate_in_set_issue. Authored-by: Bruce Robbins <bersprockets@gmail.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com> (cherry picked from commit e02ff1c) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
HyukjinKwon
pushed a commit
that referenced
this pull request
Nov 2, 2025
### What changes were proposed in this pull request? This PR proposes to add `doCanonicalize` function for DataSourceV2ScanRelation. The implementation is similar to [the one in BatchScanExec](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/BatchScanExec.scala#L150), as well as the [the one in LogicalRelation](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/LogicalRelation.scala#L52). ### Why are the changes needed? Query optimization rules such as MergeScalarSubqueries check if two plans are identical by [comparing their canonicalized form](https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/MergeScalarSubqueries.scala#L219). For DSv2, for physical plan, the canonicalization goes down in the child hierarchy to the BatchScanExec, which [has a doCanonicalize function](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/BatchScanExec.scala#L150); for logical plan, the canonicalization goes down to the DataSourceV2ScanRelation, which, however, does not have a doCanonicalize function. As a result, two logical plans who are semantically identical are not identified. Moreover, for reference, [DSv1 LogicalRelation](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/LogicalRelation.scala#L52) also has `doCanonicalize()`. ### Does this PR introduce _any_ user-facing change? No ### How was this patch tested? A new unit test is added to show that `MergeScalarSubqueries` is working for DataSourceV2ScanRelation. For a query ```sql select (select max(i) from df) as max_i, (select min(i) from df) as min_i ``` Before introducing the canonicalization, the plan is ``` == Parsed Logical Plan == 'Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- 'Project [unresolvedalias('max('i))] : : +- 'UnresolvedRelation [df], [], false : +- 'Project [unresolvedalias('min('i))] : +- 'UnresolvedRelation [df], [], false +- OneRowRelation == Analyzed Logical Plan == max_i: int, min_i: int Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- Aggregate [max(i#0) AS max(i)#7] : : +- SubqueryAlias df : : +- View (`df`, [i#0, j#1]) : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Aggregate [min(i#10) AS min(i)#9] : +- SubqueryAlias df : +- View (`df`, [i#10, j#11]) : +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Optimized Logical Plan == Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- Aggregate [max(i#0) AS max(i)#7] : : +- Project [i#0] : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Aggregate [min(i#10) AS min(i)#9] : +- Project [i#10] : +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Physical Plan == AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 0 +- *(1) Project [Subquery subquery#2, [id=#32] AS max_i#3, Subquery subquery#4, [id=#33] AS min_i#5] : :- Subquery subquery#2, [id=#32] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=58] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=19] +- HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- Subquery subquery#4, [id=#33] : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=63] +- *(1) HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- *(1) Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=30] +- HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- *(1) Scan OneRowRelation[] +- == Initial Plan == Project [Subquery subquery#2, [id=#32] AS max_i#3, Subquery subquery#4, [id=#33] AS min_i#5] : :- Subquery subquery#2, [id=#32] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=58] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=19] +- HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- Subquery subquery#4, [id=#33] : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=63] +- *(1) HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- *(1) Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=30] +- HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- Scan OneRowRelation[] ``` After introducing the canonicalization, the plan is as following, where you can see **ReusedSubquery** ``` == Parsed Logical Plan == 'Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- 'Project [unresolvedalias('max('i))] : : +- 'UnresolvedRelation [df], [], false : +- 'Project [unresolvedalias('min('i))] : +- 'UnresolvedRelation [df], [], false +- OneRowRelation == Analyzed Logical Plan == max_i: int, min_i: int Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- Aggregate [max(i#0) AS max(i)#7] : : +- SubqueryAlias df : : +- View (`df`, [i#0, j#1]) : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Aggregate [min(i#10) AS min(i)#9] : +- SubqueryAlias df : +- View (`df`, [i#10, j#11]) : +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Optimized Logical Plan == Project [scalar-subquery#2 [].max(i) AS max_i#3, scalar-subquery#4 [].min(i) AS min_i#5] : :- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] : : +- Aggregate [max(i#0) AS max(i)#7, min(i#0) AS min(i)#9] : : +- Project [i#0] : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] : +- Aggregate [max(i#0) AS max(i)#7, min(i#0) AS min(i)#9] : +- Project [i#0] : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Physical Plan == AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 0 +- *(1) Project [Subquery subquery#2, [id=#40].max(i) AS max_i#3, ReusedSubquery Subquery subquery#2, [id=#40].min(i) AS min_i#5] : :- Subquery subquery#2, [id=#40] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- *(2) HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=71] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=22] +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- ReusedSubquery Subquery subquery#2, [id=#40] +- *(1) Scan OneRowRelation[] +- == Initial Plan == Project [Subquery subquery#2, [id=#40].max(i) AS max_i#3, Subquery subquery#4, [id=#41].min(i) AS min_i#5] : :- Subquery subquery#2, [id=#40] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- *(2) HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=71] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=22] +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- Subquery subquery#4, [id=#41] : +- AdaptiveSparkPlan isFinalPlan=false : +- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] : +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) : +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=37] : +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) : +- Project [i#0] : +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- Scan OneRowRelation[] ``` ### Was this patch authored or co-authored using generative AI tooling? No Closes apache#52529 from yhuang-db/scan-canonicalization. Authored-by: yhuang-db <itisyuchuan@gmail.com> Signed-off-by: Peter Toth <peter.toth@gmail.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
What changes were proposed in this pull request?
Why are the changes needed?
Does this PR introduce any user-facing change?
How was this patch tested?