Skip to content
This repository has been archived by the owner on Jul 22, 2024. It is now read-only.

This is the pytorch implementation of some representative action recognition approaches including I3D, S3D, TSN and TAM.

License

Notifications You must be signed in to change notification settings

IBM/action-recognition-pytorch

Repository files navigation

Action Recognition Study

This repository contains a general implementation of 6 representative 2D and 3D approaches for action recognition including I3D [1], ResNet3D [2], S3D [3], R(2+1)D [4], TSN [5] and TAM [6]. And the codes are used for our analysis on action recognition.

Chun-Fu (Richard) Chen*, Rameswar Panda*, Kandan Ramakrishnan, Rogerio Feris, John Cohn, Aude Oliva and Quanfu Fan*, "Deep Analysis of CNN-based Spatio-temporal Representations for Action Recognition".
*: Equal contributions

If you use the codes and models from this repo, please cite our work. Thanks!

@inproceedings{chen2020deep,
    title={Deep Analysis of CNN-based Spatio-temporal Representations for Action Recognition},
    author={Chen, Chun-Fu and Panda, Rameswar and Ramakrishnan, Kandan and Feris, Rogerio and Cohn, John and Oliva, Aude and Fan, Quanfu},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021},
    month = jun
}

Requirements

pip install -r requirement.txt

Data Preparation

The dataloader (utils/video_dataset.py) can load videos (image sequences) stored in the following format:

-- dataset_dir
---- train.txt
---- val.txt
---- test.txt
---- videos
------ video_0_folder
-------- 00001.jpg
-------- 00002.jpg
-------- ...
------ video_1_folder
------ ...

Each line in train.txt and val.txt includes 4 elements and separated by a symbol, e.g. space or semicolon. Four elements (in order) include (1)relative paths to video_x_folder from dataset_dir, (2) starting frame number, usually 1, (3) ending frame number, (4) label id (a numeric number).

E.g., a video_x has 300 frames and belong to label 1.

path/to/video_x_folder 1 300 1

The difference for test.txt is that each line will only have 3 elements (no label information).

After that, you need to update the utils/data_config.py for the datasets accordingly.

We provided three scripts in the tools folder to help convert some datasets but the details in the scripts must be set accordingly. E.g., the path to videos.

Mini-datasets

Please find mini_ssv2 and mini_kinetics400 for the used classes.

Training and Evaluation

The opts.py illustrates the available options for training 2D and 3D models. Some options are only for 2D models or 3D models.

You can get help via

python3 train.py --help

Here is an example to train a 64-frame I3D on the Kinetics400 datasets with Uniform Sampling as input.

python3 train.py --datadir /path/to/folder --threed_data \
--dataset kinetics400 --frames_per_group 1 --groups 8 \
--logdir snapshots/ --lr 0.01 --backbone_net i3d -b 64 -j 64

To evaluate a model with more crops and clips, we provided test.py to support those variants. The test.py shares the same opts.py to train.py, so most of settings are the same. Furthermore, you can set num_crops and num_clips for test.py.

Here is an example to evaluate on the above model with 3 crops and 3 clips

python3 test.py --datadir /path/to/folder --threed_data \
--dataset kinetics400 --frames_per_group 1 --groups 8 \
--logdir snapshots/ --lr 0.01 --backbone_net i3d -b 64 -j 64 \
-e --pretrained /path/to/file --num_clips 3 --num_crops 3

Models and Results

We provided some pretrained models with 32 frames as input without temporal pooling. Those models can be evaluated with following command template, and appending additional configs.

Note: you might need to change batch size based on your GPU memory.

Models can be directly downloaded from the asset.

Kinetics400

python3 test.py --groups 32 -e --frames_per_group 2 --without_t_stride --logdir logs/ --dataset kinetics400 \
--num_crops 3 --num_clips 10 --input_size 256 --disable_scaleup -b 6 -j 24 --dense_sampling \
--datadir /path/to/dataset \
--pretrained /path/to/pretrained_model
Model Top-1 Acc Additional configs
I3D-ResNet-50-f32 76.61% --backbone_net i3d_resnet -d 50
TAM-ResNet-50-f32 76.18% --backbone_net resnet -d 50 --temporal_module_name TAM
I3D-ResNet-101-f32 77.80% --backbone_net i3d_resnet -d 101
TAM-ResNet-101-f32 77.61% --backbone_net resnet -d 101 --temporal_module_name TAM

Something-Something-V2

python3 test.py --groups 32 -e --frames_per_group 1 --without_t_stride --logdir logs/ --dataset st2stv2 \
--num_crops 3 --num_clips 2 --input_size 256 --disable_scaleup -b 6 -j 24  \
--datadir /path/to/dataset \
--pretrained /path/to/pretrained_model
Model Top-1 Acc Additional configs
I3D-ResNet-50-f32 62.84% --backbone_net i3d_resnet -d 50
TAM-ResNet-50-f32 63.83% --backbone_net resnet -d 50 --temporal_module_name TAM
I3D-ResNet-101-f32 64.29% --backbone_net i3d_resnet -d 101
TAM-ResNet-101-f32 65.32% --backbone_net resnet -d 101 --temporal_module_name TAM

Results on Mini-Datasets

See benchmark_mini.md

Reference

  1. Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6299–6308, 2017

  2. Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

  3. Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in Video Classification. In The European Conference on Computer Vision (ECCV), Sept. 2018

  4. Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A Closer Look at Spatiotemporal Convolutions for Action Recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

  5. Ji Lin, Chuang Gan, and Song Han. Temporal Shift Module for Efficient Video Understanding. In The IEEE International Conference on Computer Vision (ICCV), 2019

  6. Quanfu Fan, Chun-Fu (Ricarhd) Chen, Hilde Kuehne, Marco Pistoia, and David Cox. More Is Less: Learning Efficient Video Representations by Temporal Aggregation Modules. In Advances in Neural Information Processing Systems 33,

About

This is the pytorch implementation of some representative action recognition approaches including I3D, S3D, TSN and TAM.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages