Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tests & Refactor (incl. dependencies, CICD workflow, Documentation workflow) & Doc. #14

Merged
merged 65 commits into from
May 17, 2022

Conversation

CharlesGaydon
Copy link
Collaborator

@CharlesGaydon CharlesGaydon commented May 9, 2022

A test suite that covers typical use case: training and prediction from CLI, successive train+test, dry run on RandLaNet, overfitting test with RandLaNet and PointNet to assure that the model is trainable.

Dependency torch-points-kernels is deleted, and replaced using pyg, which adds some complexity in code but simplifies installation of virtual environment. The resulting code is retrocompatible with previous models and fully tested for regressions (IoU is unchanged on a 15km² test set).

Corrections to the docker file are also implemented ; in particular, CUDA images were broken by a CUDA update, and needed to be adjusted.

Workflows make a good use of caching functionnalitis, both from Docker and from Github environment.

Requirements files are simplified. Dependencies are installed without redundant command lines. torchmetrics version is fixed, because pytorch-lightning would elsewise use a newer, non-retrocompatible version.

…esults.

Replace with pyg knn in 1/2 places

Refactor to extract knns as functions instead of methods

No regression on large las IoU

Remove torck-points-kernels dependency
@@ -86,13 +89,13 @@ def forward(self, batch):
"""

input = torch.cat([batch.pos, batch.x], axis=1)
chunks = torch.split(input, len(batch.pos) // batch.batch_size)
chunks = torch.split(input, len(batch.pos) // batch.num_batches)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

J'ai la sensation qu'ici on change la forme du tenseur, en faisant la manip inverse de celle qu'on effectue avec les np.concatenate() du fichier transform.py L337. Est-ce le cas et est-ce nécessaire de faire cette transformation/détransformation ?

import comet_ml
except:
# It is safer to import comet before all other imports.
import comet_ml # noqa
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Flake8 râle ici car comet_ml n'est pas utilisée dans ce fichier, est-ce que la librairie doit quand même être présente pour récupérer ce dont elle a besoin ?

which contains LAS files with a classification).

finetune:
Finetunes a checkpointed neural network on a prepared dataset, which muste be specified
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

petite typo: must sans e

kwargs_to_override = copy.deepcopy(model.hparams)
NEURAL_NET_ARCHITECTURE_CONFIG_GROUP = "neural_net"
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

J'ai déjà fait des suggestions pour ces constantes, j'en fait une autre : il est aussi possible de les mettre simplement en haut de la page (quand c'est au milieu d'une fonction cela me stresse)

@@ -142,14 +157,19 @@ def train(config: DictConfig) -> Optional[float]:

if "finetune" in task_name:
log.info("Starting finetuning pretrained model on new data!")
# here rebuild model but overwrite everything except module related params
# Instantiates the Model but overwrites everything with current config,
# except module related params (nnet architecture)
kwargs_to_override = copy.deepcopy(model.hparams)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Je ne pense pas que tu as besoin de faire une copie du dictionnaire, puisque derrière tu reconstruit encore un dictionnaire (avec un filtre les noms de clés)

kwargs_to_override = {
key: value
for key, value in kwargs_to_override.items()
if "neural_net" not in key
if NEURAL_NET_ARCHITECTURE_CONFIG_GROUP not in key
}
model = Model.load_from_checkpoint(config.model.ckpt_path, **kwargs_to_override)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

D'après ce que je comprends, il y a toute la procédure au-dessus avec les dictionnaires pour supprimer les clés avec "neural_net" pour ne pas passer en paramètre de load_from_checkpoint le "neural_net". Je suppose que c'est parce que le modèle est déjà défini et qu'on ne peut pas le changer. Cepndant, je n'ai pas réussi à voir où se trouvait ce "neural_net" dans les configs, est-ce encore utilisé ? Sinon autant enlever tout ce "bazar". Si c'est encore utiliser, il faudrait bien préciser dans la doc à quoi cela sert et qu'il est nécessaire de bien garder cette nomenclature

# Hydra changes CWD, and therefore absolute paths are preferred
abs_path_to_toy_LAS = osp.abspath(LAS_SUBSET_FOR_TOY_DATASET)
command = [
"run.py",
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

On est bien d'accord que les tests où il y a un "run" sont des test fonctionnels, pas unitaires ? (pas que cela soit mal, juste une précision)


@pytest.mark.slow()
def test_RandLaNet_overfitting(isolated_toy_dataset_tmpdir, tmpdir):
"""Check ability to overfit with RandLa-Net.
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Je ne comprends pas l'intérêt de tester l'overfitting

assert dim in a1.dtype.fields.keys()


def check_las_does_not_contains_dims(las_path, dims_to_check=[]):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Plutôt que de tester que le las ne contient pas certains champs, peut-être vérifier qu'il contient tous les champs voulu et seulement ceux-là (plus exhaustif). Evidemment il faut que la liste complête des champs soit connue, mais il me semble que c'est le cas

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants