-
Notifications
You must be signed in to change notification settings - Fork 5
/
eval_one.py
executable file
·120 lines (93 loc) · 3.19 KB
/
eval_one.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
'''
Evaluation file for only a single image.
'''
import cPickle as pickle
import tensorflow as tf
from scipy import misc
from tqdm import tqdm
import numpy as np
import argparse
import random
import ntpath
import sys
import os
import time
import time
import glob
import cPickle as pickle
from tqdm import tqdm
import cv2
sys.path.insert(0, 'ops/')
sys.path.insert(0, 'nets/')
from tf_ops import *
import data_ops
if __name__ == '__main__':
if len(sys.argv) < 3:
print 'You must provide an info.pkl file and an image'
exit()
pkl_file = open(sys.argv[1], 'rb')
a = pickle.load(pkl_file)
LEARNING_RATE = a['LEARNING_RATE']
LOSS_METHOD = a['LOSS_METHOD']
BATCH_SIZE = a['BATCH_SIZE']
L1_WEIGHT = a['L1_WEIGHT']
IG_WEIGHT = a['IG_WEIGHT']
NETWORK = a['NETWORK']
AUGMENT = a['AUGMENT']
EPOCHS = a['EPOCHS']
DATA = a['DATA']
EXPERIMENT_DIR = 'checkpoints/LOSS_METHOD_'+LOSS_METHOD\
+'/NETWORK_'+NETWORK\
+'/L1_WEIGHT_'+str(L1_WEIGHT)\
+'/IG_WEIGHT_'+str(IG_WEIGHT)\
+'/AUGMENT_'+str(AUGMENT)\
+'/DATA_'+DATA+'/'\
IMAGES_DIR = EXPERIMENT_DIR+'test_images/'
test_image = sys.argv[2]
print
print 'LEARNING_RATE: ',LEARNING_RATE
print 'LOSS_METHOD: ',LOSS_METHOD
print 'BATCH_SIZE: ',BATCH_SIZE
print 'L1_WEIGHT: ',L1_WEIGHT
print 'IG_WEIGHT: ',IG_WEIGHT
print 'NETWORK: ',NETWORK
print 'EPOCHS: ',EPOCHS
print 'DATA: ',DATA
print
if NETWORK == 'pix2pix': from pix2pix import *
if NETWORK == 'resnet': from resnet import *
# global step that is saved with a model to keep track of how many steps/epochs
global_step = tf.Variable(0, name='global_step', trainable=False)
# underwater image
image_u = tf.placeholder(tf.float32, shape=(1, 256, 256, 3), name='image_u')
# generated corrected colors
layers = netG_encoder(image_u)
gen_image = netG_decoder(layers)
saver = tf.train.Saver(max_to_keep=1)
init = tf.group(tf.local_variables_initializer(), tf.global_variables_initializer())
sess = tf.Session()
sess.run(init)
ckpt = tf.train.get_checkpoint_state(EXPERIMENT_DIR)
if ckpt and ckpt.model_checkpoint_path:
print "Restoring previous model..."
try:
saver.restore(sess, ckpt.model_checkpoint_path)
print "Model restored"
except:
print "Could not restore model"
pass
step = int(sess.run(global_step))
img_name = ntpath.basename(test_image)
img_name = img_name.split('.')[0]
batch_images = np.empty((1, 256, 256, 3), dtype=np.float32)
#a_img = misc.imread(test_image).astype('float32')
a_img = cv2.imread(test_image)
a_img = cv2.cvtColor(a_img, cv2.COLOR_BGR2RGB)
a_img = a_img.astype('float32')
a_img = misc.imresize(a_img, (256, 256, 3))
a_img = data_ops.preprocess(a_img)
a_img = np.expand_dims(a_img, 0)
batch_images[0, ...] = a_img
gen_images = np.asarray(sess.run(gen_image, feed_dict={image_u:batch_images}))
misc.imsave('./'+img_name+'_real.png', batch_images[0])
misc.imsave('./'+img_name+'_gen.png', gen_images[0])