-
Notifications
You must be signed in to change notification settings - Fork 5
/
underwater_eval.py
executable file
·124 lines (95 loc) · 3.3 KB
/
underwater_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
'''
Evaluates images from the diving video
'''
import cPickle as pickle
import tensorflow as tf
from scipy import misc
from tqdm import tqdm
import numpy as np
import argparse
import random
import ntpath
import sys
import os
import time
import glob
import cPickle as pickle
from tqdm import tqdm
sys.path.insert(0, 'ops/')
sys.path.insert(0, 'nets/')
from tf_ops import *
import data_ops
if __name__ == '__main__':
if len(sys.argv) < 3:
print 'You must provide an info.pkl file and a diving file'
exit()
pkl_file = open(sys.argv[1], 'rb')
a = pickle.load(pkl_file)
num_d = str(sys.argv[2])
LEARNING_RATE = a['LEARNING_RATE']
LOSS_METHOD = a['LOSS_METHOD']
BATCH_SIZE = a['BATCH_SIZE']
EPOCHS = a['EPOCHS']
L1_WEIGHT = a['L1_WEIGHT']
IG_WEIGHT = a['IG_WEIGHT']
NETWORK = a['NETWORK']
DATA = a['DATA']
LAYER_NORM = a['LAYER_NORM']
EXPERIMENT_DIR = 'checkpoints/LOSS_METHOD_'+LOSS_METHOD\
+'/NETWORK_'+NETWORK\
+'/LAYER_NORM_'+str(LAYER_NORM)\
+'/L1_WEIGHT_'+str(L1_WEIGHT)\
+'/IG_WEIGHT_'+str(IG_WEIGHT)\
+'/DATA_'+DATA+'/'\
IMAGES_DIR = EXPERIMENT_DIR+'diving'+num_d+'/'
print
print 'Creating',IMAGES_DIR
try: os.makedirs(IMAGES_DIR)
except: pass
print
print 'LEARNING_RATE: ',LEARNING_RATE
print 'LOSS_METHOD: ',LOSS_METHOD
print 'BATCH_SIZE: ',BATCH_SIZE
print 'NETWORK: ',NETWORK
print 'EPOCHS: ',EPOCHS
print
if NETWORK == 'pix2pix': from pix2pix import *
if NETWORK == 'resnet': from resnet import *
# global step that is saved with a model to keep track of how many steps/epochs
global_step = tf.Variable(0, name='global_step', trainable=False)
# underwater image
image_u = tf.placeholder(tf.float32, shape=(1, 256, 256, 3), name='image_u')
# generated corrected colors
gen_image = netG(image_u, LOSS_METHOD)
saver = tf.train.Saver(max_to_keep=1)
init = tf.group(tf.local_variables_initializer(), tf.global_variables_initializer())
sess = tf.Session()
sess.run(init)
ckpt = tf.train.get_checkpoint_state(EXPERIMENT_DIR)
if ckpt and ckpt.model_checkpoint_path:
print "Restoring previous model..."
try:
saver.restore(sess, ckpt.model_checkpoint_path)
print "Model restored"
except:
print "Could not restore model"
pass
step = int(sess.run(global_step))
# testing paths
test_paths = sorted(np.asarray(glob.glob('/mnt/data2/images/underwater/youtube/diving'+num_d+'/*.jpg')))
num_test = len(test_paths)
print 'num test:',num_test
c = 0
for img_path in tqdm(test_paths):
img_name = ntpath.basename(img_path)
img_name = img_name.split('.')[0]
batch_images = np.empty((1, 256, 256, 3), dtype=np.float32)
a_img = misc.imread(img_path).astype('float32')
a_img = misc.imresize(a_img, (256, 256, 3))
a_img = data_ops.preprocess(a_img)
batch_images[0, ...] = a_img
gen_images = np.asarray(sess.run(gen_image, feed_dict={image_u:batch_images}))
for gen, real in zip(gen_images, batch_images):
misc.imsave(IMAGES_DIR+img_name+'_real.png', real)
misc.imsave(IMAGES_DIR+img_name+'_gen.png', gen)
c += 1