Skip to content

Implementation of "Human Body Model Fitting by Learned Gradient Descent" (ECCV 2020)

Notifications You must be signed in to change notification settings

InpatientJam/Learned-Gradient-Descent

Repository files navigation

README

Data Preparation

  1. Use pip install -r requirements.txt to download required packages.
  2. Download 3DPW dataset from https://virtualhumans.mpi-inf.mpg.de/3DPW/license.html, and put it under data/3DPW/ folder.
  3. Preprocess 3DPW data using python scripts/preprocess_3DPW.py
  4. Download all the https://amass.is.tue.mpg.de/index.html, and extract them to data/AMASS/ folder.
  5. Preprocess AMASS data using python scripts/preprocess_AMASS.py
  6. Download SMPL model and place it under data/smplx_models/smpl/

If everything setups properly, the layout of data/ folder will be something like:

 data
 ├── 3DPW
 │   ├── imageFiles/
 │   └── sequenceFiles/
 ├── AMASS
 │    ├── ACCAD/
 │    ├── BioMotionLab_NTroje/
 │    ├── BMLhandball/
 │    ├── BMLmovi/
 │    ├── CMU/
 │    ├── DanceDB/
 │    ├── DFaust_67/
 │    ├── EKUT/
 │    ├── Eyes_Japan_Dataset/
 │    ├── HUMAN4D/
 │    ├── HumanEva/
 │    ├── KIT/
 │    ├── MPI_HDM05/
 │    ├── MPI_Limits/
 │    ├── MPI_mosh/
 │    ├── SFU/
 │    ├── SSM_synced/
 │    ├── TCD_handMocap/
 │    ├── TotalCapture/
 │    └── Transitions_mocap/
 ├── 3DPW_test.npz
 ├── 3DPW_valid.npz
 ├── AMASS.npz
 ├── J_regressor_h36m.npy
 └── smplx_models
     └── smpl
         ├── SMPL_FEMALE.pkl
         ├── SMPL_MALE.pkl
         └── SMPL_NEUTRAL.pkl

Training & Evaluation

# Evaluate with sample pretrained model
python eval.py

# (Optional) train from scratch
python train.py

About

Implementation of "Human Body Model Fitting by Learned Gradient Descent" (ECCV 2020)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages