Skip to content

Commit

Permalink
Merge pull request #1210 from IntelPython/feature/sum-reduction
Browse files Browse the repository at this point in the history
Implement `dpctl.tensor.sum` reduction operation
  • Loading branch information
oleksandr-pavlyk authored May 25, 2023
2 parents cf431d7 + fcd0935 commit 521867b
Show file tree
Hide file tree
Showing 10 changed files with 1,949 additions and 1 deletion.
1 change: 1 addition & 0 deletions dpctl/tensor/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@ pybind11_add_module(${python_module_name} MODULE
${CMAKE_CURRENT_SOURCE_DIR}/libtensor/source/boolean_reductions.cpp
${CMAKE_CURRENT_SOURCE_DIR}/libtensor/source/device_support_queries.cpp
${CMAKE_CURRENT_SOURCE_DIR}/libtensor/source/elementwise_functions.cpp
${CMAKE_CURRENT_SOURCE_DIR}/libtensor/source/sum_reductions.cpp
)
set(_clang_prefix "")
if (WIN32)
Expand Down
2 changes: 2 additions & 0 deletions dpctl/tensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,7 @@
sqrt,
subtract,
)
from ._reduction import sum

__all__ = [
"Device",
Expand Down Expand Up @@ -191,4 +192,5 @@
"multiply",
"subtract",
"equal",
"sum",
]
167 changes: 167 additions & 0 deletions dpctl/tensor/_reduction.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
# Data Parallel Control (dpctl)
#
# Copyright 2020-2023 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from numpy.core.numeric import normalize_axis_tuple

import dpctl
import dpctl.tensor as dpt
import dpctl.tensor._tensor_impl as ti

from ._type_utils import _to_device_supported_dtype


def _default_reduction_dtype(inp_dt, q):
"""Gives default output data type for given input data
type `inp_dt` when reduction is performed on queue `q`
"""
inp_kind = inp_dt.kind
if inp_kind in "bi":
res_dt = dpt.dtype(ti.default_device_int_type(q))
if inp_dt.itemsize > res_dt.itemsize:
res_dt = inp_dt
elif inp_kind in "u":
res_dt = dpt.dtype(ti.default_device_int_type(q).upper())
res_ii = dpt.iinfo(res_dt)
inp_ii = dpt.iinfo(inp_dt)
if inp_ii.min >= res_ii.min and inp_ii.max <= res_ii.max:
pass
else:
res_dt = inp_dt
elif inp_kind in "f":
res_dt = dpt.dtype(ti.default_device_fp_type(q))
if res_dt.itemsize < inp_dt.itemsize:
res_dt = inp_dt
elif inp_kind in "c":
res_dt = dpt.dtype(ti.default_device_complex_type(q))
if res_dt.itemsize < inp_dt.itemsize:
res_dt = inp_dt

return res_dt


def sum(arr, axis=None, dtype=None, keepdims=False):
"""sum(x, axis=None, dtype=None, keepdims=False)
Calculates the sum of the input array `x`.
Args:
x (usm_ndarray):
input array.
axis (Optional[int, Tuple[int,...]]):
axis or axes along which sums must be computed. If a tuple
of unique integers, sums are computed over multiple axes.
If `None`, the sum if computed over the entire array.
Default: `None`.
dtype (Optional[dtype]):
data type of the returned array. If `None`, the default data
type is inferred from the "kind" of the input array data type.
* If `x` has a real-valued floating-point data type,
the returned array will have the default real-valued
floating-point data type for the device where input
array `x` is allocated.
* If x` has signed integral data type, the returned array
will have the default signed integral type for the device
where input array `x` is allocated.
* If `x` has unsigned integral data type, the returned array
will have the default unsigned integral type for the device
where input array `x` is allocated.
* If `x` has a complex-valued floating-point data typee,
the returned array will have the default complex-valued
floating-pointer data type for the device where input
array `x` is allocated.
* If `x` has a boolean data type, the returned array will
have the default signed integral type for the device
where input array `x` is allocated.
If the data type (either specified or resolved) differs from the
data type of `x`, the input array elements are cast to the
specified data type before computing the sum. Default: `None`.
keepdims (Optional[bool]):
if `True`, the reduced axes (dimensions) are included in the result
as singleton dimensions, so that the returned array remains
compatible with the input arrays according to Array Broadcasting
rules. Otherwise, if `False`, the reduced axes are not included in
the returned array. Default: `False`.
Returns:
usm_ndarray:
an array containing the sums. If the sum was computed over the
entire array, a zero-dimensional array is returned. The returned
array has the data type as described in the `dtype` parameter
description above.
"""
if not isinstance(arr, dpt.usm_ndarray):
raise TypeError(f"Expected dpctl.tensor.usm_ndarray, got {type(arr)}")
nd = arr.ndim
if axis is None:
axis = tuple(range(nd))
if not isinstance(axis, (tuple, list)):
axis = (axis,)
axis = normalize_axis_tuple(axis, nd, "axis")
red_nd = len(axis)
perm = [i for i in range(nd) if i not in axis] + list(axis)
arr2 = dpt.permute_dims(arr, perm)
res_shape = arr2.shape[: nd - red_nd]
q = arr.sycl_queue
inp_dt = arr.dtype
if dtype is None:
res_dt = _default_reduction_dtype(inp_dt, q)
else:
res_dt = dpt.dtype(dtype)
res_dt = _to_device_supported_dtype(res_dt, q.sycl_device)

res_usm_type = arr.usm_type
if red_nd == 0:
return dpt.zeros(
res_shape, dtype=res_dt, usm_type=res_usm_type, sycl_queue=q
)

host_tasks_list = []
if ti._sum_over_axis_dtype_supported(inp_dt, res_dt, res_usm_type, q):
res = dpt.empty(
res_shape, dtype=res_dt, usm_type=res_usm_type, sycl_queue=q
)
ht_e, _ = ti._sum_over_axis(
src=arr2, trailing_dims_to_reduce=red_nd, dst=res, sycl_queue=q
)
host_tasks_list.append(ht_e)
else:
if dtype is None:
raise RuntimeError(
"Automatically determined reduction data type does not "
"have direct implementation"
)
tmp_dt = _default_reduction_dtype(inp_dt, q)
tmp = dpt.empty(
res_shape, dtype=tmp_dt, usm_type=res_usm_type, sycl_queue=q
)
ht_e_tmp, r_e = ti._sum_over_axis(
src=arr2, trailing_dims_to_reduce=red_nd, dst=tmp, sycl_queue=q
)
host_tasks_list.append(ht_e_tmp)
res = dpt.empty(
res_shape, dtype=res_dt, usm_type=res_usm_type, sycl_queue=q
)
ht_e, _ = ti._copy_usm_ndarray_into_usm_ndarray(
src=tmp, dst=res, sycl_queue=q, depends=[r_e]
)
host_tasks_list.append(ht_e)

if keepdims:
res_shape = res_shape + (1,) * red_nd
inv_perm = sorted(range(nd), key=lambda d: perm[d])
res = dpt.permute_dims(dpt.reshape(res, res_shape), inv_perm)
dpctl.SyclEvent.wait_for(host_tasks_list)

return res
Original file line number Diff line number Diff line change
Expand Up @@ -183,7 +183,7 @@ struct SequentialBooleanReduction
void operator()(sycl::id<1> id) const
{

auto inp_out_iter_offsets_ = inp_out_iter_indexer_(id[0]);
auto const &inp_out_iter_offsets_ = inp_out_iter_indexer_(id[0]);
const py::ssize_t &inp_iter_offset =
inp_out_iter_offsets_.get_first_offset();
const py::ssize_t &out_iter_offset =
Expand Down
Loading

0 comments on commit 521867b

Please sign in to comment.