Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

D455 on Jetson Xavier very slow #2396

Closed
GEngels opened this issue Jul 1, 2022 · 62 comments
Closed

D455 on Jetson Xavier very slow #2396

GEngels opened this issue Jul 1, 2022 · 62 comments
Labels

Comments

@GEngels
Copy link

GEngels commented Jul 1, 2022

I am trying to use the Intel Realsense camera on the Jetson Xavier AGX. When I only run the RGB camera & depth image it seems to run quite fast (30fps). However, when I enable the pointcloud it becomes very slow.

I tried to run it at 15 fps for RGB & Depth at various resolutions but the result is the same. The RGB camera freezes and no point cloud is displayed in RVIZ. When I block part of the depth camera (so that it doesn't have to create as many points in the point cloud) it seems to work again. The creation of the pointcloud in the realsense node seems to be a bottleneck, I am running the Jetson on max performance.

Some of the errors and warnings that appear are the following:

"incomplete frame received: Incomplete video frame detected! Size 99080 out of 2048255 bytes (4%):"
"Hardware Notification:Depth stream start failure,1.65668e+12,Error,Hardware Error"
"Out of frame resources"

I wonder if it is expected behaviour that you can only run it with maybe 5 FPS on the Jetson on max settings.

@MartyG-RealSense
Copy link
Collaborator

Hi @GEngels Problems with pointcloud generation, and also enabling align_depth, on Jetson boards specifically are a known issue in the RealSense ROS wrapper. Symptoms can iclude very low FPS or missing color. The issue does not occur on non-Jetson computers such as laptop and desktop PCs. Detailed information about it can be found at #1967

For ROS1 (Kinetic, Melodic, Noetic) the current best solution available is to use librealsense version 2.43.0 and ROS1 wrapper version 2.2.23.

@Doch88
Copy link

Doch88 commented Jul 4, 2022

Hi @MartyG-RealSense, I am a colleague of @GEngels.
Thank you for your quick answer!
We are currently using ROS2, is there also a version of the ROS2 wrapper that works flawlessly with the Jetson? And I guess the librealsense version will still be 2.43.0 in that case.

@MartyG-RealSense
Copy link
Collaborator

Hi @Doch88 The older RealSense ros2 wrapper branch would have to be used with older SDK versions, as the current ros2_beta wrapper branch is for SDK 2.50.0.

https://github.com/IntelRealSense/realsense-ros/tree/ros2

If SDK 2.43.0 is being used with ROS2 then it would have to be matched with ROS2 wrapper version 3.1.5

https://github.com/IntelRealSense/realsense-ros/releases/tag/3.1.5

This wrapper version only supports Foxy, Eloquent and Dashing though. So it would not be suitable for newer ROS2 versions such as Galactic and Rolling as support for those two ROS2 versions was introduced in more recent wrapper versions.

As far as I am aware, Jetson pointcloud generation has not been tested with the combination of SDK 2.43.0 and ROS2 wrapper 3.1.5 though, so I cannot offer a guarantee about pointcloud performance with that configuration.

@Doch88
Copy link

Doch88 commented Jul 5, 2022

Hi @MartyG-RealSense, I built the SDK 2.43.0 version from source (using RSUSB backend), with CUDA support, and I also used the ROS2 wrapper version 3.1.5 (with Foxy), built from source too.
The problem seems to be still there. However, it seems to change depending on which Jetson power option is enabled.

  • With MAXN the FPS seems very low, and the frames are received with a delay, at least as it is shown on RViz and Rqt (this does not happen with the point cloud generation disabled). It seems also that some frames are dropped or not received correctly. The point cloud is published, with the same delay. This behavior is not consistent anyway, sometimes it is also pretty much worse. If I occlude one of the two infrared cameras it seems to become much better.
  • With MODE 15W Desktop, same as with MAXN.
  • With MODE 30W ALL the color frame is stuck, and the point cloud is not published. The depth frame is shown correctly. If we lower the resolution of the Depth frame to 848x400 the problem seems to not be there anymore or at least, sometimes, it is comparable with the MAXN one.

What looks strange to me is that the 15W is performing better than the 30W one, I would guess that it depends on some specific power limitation set with these modes on the USB port or on the CPU cores.

EDIT: With the realsense-viewer everything works perfectly.

@MartyG-RealSense
Copy link
Collaborator

Thanks so much for the feedback from your tests!

When you refer to occluding an infrared camera, do you mean having it disabled in the ROS wrapper or covering over the lens on the outside of the camera?

@Doch88
Copy link

Doch88 commented Jul 5, 2022

Sorry, I mean covering the lens on the outside of the camera.

@Doch88
Copy link

Doch88 commented Jul 5, 2022

New update:
We are using 1280x720 15 fps for the Depth and 1280x800 15 fps for the color.
Disabling the spatial and temporal filtering seems to improve a lot the performance (still some delay tho) with those resolutions and FPS.
But the problem appears again if I set the FPS to 30.

The Realsense-viewer works perfectly in the 3D view with all the post-processing filters enabled, the same resolutions, and the FPS set to 30.

@MartyG-RealSense
Copy link
Collaborator

How does it perform if depth and color are both set to 848x480 and 30 FPS?

@Doch88
Copy link

Doch88 commented Jul 5, 2022

MAXN: It works well with that resolution and FPS.
MODE 30W ALL: There are 1 or 2 seconds of delay, but the point cloud and the RGB frame are published.

However, we need at least a resolution of 1280x720 with 15 FPS, preferably using MODE 30W ALL.
With the realsense-viewer every setting that I tried worked perfectly, so nothing to notice there.

@MartyG-RealSense
Copy link
Collaborator

MartyG-RealSense commented Jul 5, 2022

How about using 1280x720 and applying a Decimation filter to reduce the complexity of the depth scene? The Decimation filter will not work with align_depth = true though if you are using alignment.

@Doch88
Copy link

Doch88 commented Jul 5, 2022

Yes, we are using alignment, and also the Decimation filter will reduce the resolution of the depth image, which is not something that we want.

@MartyG-RealSense
Copy link
Collaborator

In your project, is 1280x720 a requirement for both depth and color or only for depth?

@Doch88
Copy link

Doch88 commented Jul 6, 2022

In your project, is 1280x720 a requirement for both depth and color or only for depth?

Yes, unfortunately it is a requirement for both frames.

@MartyG-RealSense
Copy link
Collaborator

Can you confirm please that when you built librealsense from source code with RSUSB, you included the build flag -DBUILD_WITH_CUDA=TRUE in the CMake build instruction? An RSUSB build of librealsense will automatically support metadata but require the DBUILD_WITH_CUDA flag to be used in order to add CUDA support to the build too.

@Doch88
Copy link

Doch88 commented Jul 6, 2022

I used this command to build the library:

cmake -DBUILD_WITH_CUDA=True -DCMAKE_BUILD_TYPE=Release -DFORCE_LIBUVC=true ..

@Doch88
Copy link

Doch88 commented Jul 6, 2022

I checked the differences between MODE 30W ALL and MODE 15W DESKTOP.
The first one uses 8 core with a capped frequency for all of them of 1.2 Ghz. The latter, instead, uses 4 cores, and two of them have a capped frequency of 2.18 Ghz (The other twos still 1.2 Ghz).
As the 15W DESKTOP one works better than the 30W one I guess that the problem is some CPU-intensive operation.
As I know the spatial filtering and the temporal filtering are executed on the CPU, while I know nothing about the point cloud generation (I see that there is a function called rs2::gl::pointcloud for pointcloud generation using GPU, which is not used directly in the ROS2 node, but maybe it is used indirectly when building the library with CUDA).

Also I looked a bit into the code of the realsense-viewer and at a first sight I noticed that there a difference thread is used for the post-processing part of the code, while in the node (as I understood) everything is done in the same thread (except for some part not related to filtering and point cloud generation).
Maybe that could also help a bit to understand what is the actual problem.

@MartyG-RealSense
Copy link
Collaborator

You mentioed earlier at #2396 (comment) that you could run well with 1280x720 depth and 1280x800 color (both at 15 FPS) but with spatial and temporal filters disabled. Are these filters vital to your ROS project, please?

Normally, Infra and Infra2 are disabled by default when using the rs_launch.py launch file. Are you using that launch file or a custom launch file, and if you are using a custom launch then are Infra and Infra2 enabled in it?

@Doch88
Copy link

Doch88 commented Jul 6, 2022

You mentioed earlier at #2396 (comment) that you could run well with 1280x720 depth and 1280x800 color (both at 15 FPS) but with spatial and temporal filters disabled. Are these filters vital to your ROS project, please?

It runs better, but there is still a bit of delay which we would like to avoid.
Also, it would be nice to run everything with the best settings possible, as it works well with the realsense-viewer.
So if it is possible to run it at 30 FPS that would be amazing. The spatial and temporal filters are not essential, tho.

By the way thank you for your support, I really like the fact that you are trying to reply as quickly and precisely as possible, so I am sorry if I am being a bit annoying!

@Doch88
Copy link

Doch88 commented Jul 6, 2022

Normally, Infra and Infra2 are disabled by default when using the rs_launch.py launch file. Are you using that launch file or a custom launch file, and if you are using a custom launch then are Infra and Infra2 enabled in it?

We are using a custom launch file that uses rs_launch.py inside, we are not touching the settings regarding infra and infra2.

These are the launch arguments, many of them are useless for the current camera but they are still provided for internal purposes:

            launch_arguments={
                'device_type': 'd455',
                'enable_gyro': 'false',
                'enable_accel': 'false',
                'enable_sync': 'true',
                'initial_reset': 'true',
                'align_depth': 'true',
                'enable_pointcloud': 'true',
                'ordered_pc': 'true',
                'enable_fisheye1': 'false',
                'enable_fisheye2': 'false',
                'enable_confidence': 'false',
                'depth_fps': '15.0',
                'depth_width': '1280',
                'depth_height': '720',
                'color_fps': '15.0',
                'color_width': '1280',
                'color_height': '800',
                'filters': '""',
                'clip_distance': '10.0',
            }

@MartyG-RealSense
Copy link
Collaborator

MartyG-RealSense commented Jul 6, 2022

It's no trouble at all :)

If librealsense is built with the flag -DBUILD_WITH_OPENMP=TRUE then YUY to RGB color conversion and depth-color alignment can take advantage of multiple CPU cores, at the expense of slightly higher CPU percentage utilization.

rs2::gl, also known as GLSL, is an alternative acceleration system to CUDA that is built into librealsense and works with any graphics GPU brand instead of just Nvidia. It is not involved in CUDA processing. There would not be a significant performance advantage to using GLSL over CUDA and since GLSL only works with rs2:: instructions in librealsense scripts, CUDA will be the best choice for ROS.

Unless you need an ordered pointcloud instead of the default unordered one then you could try removing the ordered_pc instruction to see if it makes a positive difference.

As you are using both depth and color, if auto-exposure is enabled then you could also try disabling an RGB setting called auto_exposure_priority to force the FPS of the two streams to remain at the defined FPS (such as '30') instead of being permitted to drop to a lower FPS value. Information about defining this setting in a launch file as a rosparam is at #2308 (comment)

@Doch88
Copy link

Doch88 commented Jul 8, 2022

Thank you for your clarifications!
I will try to build librealsense today with OpenMP enabled and see if it improves the results.

Yes, we need ordered_pc and I have also tried to disable it and the performances did not improve visibly.

I cannot find how to set that parameter with ROS2, that setting in the launch file seems to be a ROS1 one. Also, I cannot find the definition of that parameter inside of the Realsense node, can you provide me a way to do that with ROS2?

@MartyG-RealSense
Copy link
Collaborator

MartyG-RealSense commented Jul 8, 2022

Are you able to test disabling auto_exposure_priority by opening the rqt_reconfigure interface in the 3.x ROS2 wrapper with the command ros2 run rqt_reconfigure rqt_reconfigure

If you can open the rqt_reconfigure interface and the side-panel has an rgb_camera category in its side-panel (camera > rgb_camera) then the auto_exposure_priority option should be under that section's options.

image

@Doch88
Copy link

Doch88 commented Jul 12, 2022

For some reason rqt_reconfigure was not working, but I managed to change the setting with
ros2 param set /camera/camera rgb_camera.auto_exposure_priority false
Although nothing really changed that much.
Also, I just saw that disabling everything (including pointcloud generation and depth alignment) on Rviz appears to be quite ok, but instead, doing ros2 topic hz /camera/color/image_raw, I realize that the publishing rate is always lower than expected.

If I set the camera to run at 15 fps, the publishing rate is around 10 Hz; if I set the camera to run at 30 fps the publishing rate is around 20 Hz (1280x720 for both cases). Don't know then if it is a problem of ros2 topic hz or of the realsense node.
That happens also if I disable auto_exposure_priority and if I build with -DBUILD_WITH_OPENMP.

@MartyG-RealSense
Copy link
Collaborator

Thanks very much for your tests.

When auto_exposure_priority is set to False, is the RGB auto_exposure also set to True? If auto_exposure is true and auto_exposure_priority is false then the FPS rate should be forced to remain constant.

@Doch88
Copy link

Doch88 commented Jul 13, 2022

Thanks very much for your tests.

When auto_exposure_priority is set to False, is the RGB auto_exposure also set to True? If auto_exposure is true and auto_exposure_priority is false then the FPS rate should be forced to remain constant.

Yes, the RGB auto_exposure is also set to True, I already checked them because I saw another issue where someone (I think you) replied that it should be True when auto_exposure_priority is false, in order to get constant FPS.
image
Here's a picture of the hz of the camera image with everything disabled.
image
This is a screenshot of the startup of the camera. (wrapper v. 3.1.5, librealsense 2.43.0)
I also tried to run the camera both with ROS Foxy and ROS Elegant, using docker containers, nothing really changed.

On realsense-viewer the reported FPS are always ~30.0 for both frames. Although something that I noticed is that disabling "Use GLSL for processing" on the realsense-viewer the frame drop rate becomes quite high, around 30%, with sometimes 45% and sometimes 20%. If I use "Camera timestamp rate" as a metric to measure the frame drop rate it becomes constantly 50% instead.
image

That seems strange to me, since as you said it should use CUDA by default and using GLSL should not make any difference, having built it from source with CUDA enabled.

@MartyG-RealSense
Copy link
Collaborator

MartyG-RealSense commented Jul 13, 2022

GLSL differs from CUDA in that programs will not make use of GLSL acceleration unless support for doing so has been deliberately coded into that program, like it is in the RealSense Viewer. So the ROS wrapper would not be benefiting from GLSL.

CUDA acceleration of pointclouds, alignment and color conversion is provided automatically though if the librealsense SDK has CUDA support enabled (by building the SDK from packages, or from source code with the DBUILD_WITH_CUDA=true flag included).

CUDA support is not included though if the SDK and the ROS wrapper were installed together from packages at the same time using the wrapper's Method 1 instructions.

@Doch88
Copy link

Doch88 commented Jul 18, 2022

Then I do not really understand this difference of performance between the node and the realsense-viewer.
Another thing that I saw is that the USB power consumption seems to be quite low, even when used:

jetsonxavier@ubuntu:~$ lsusb -v | egrep "^Bus|MaxPower"
Bus 002 Device 004: ID 8086:0b5c Intel Corp. 
    MaxPower              180mA

I would expect it to be around 700 mA, as it is when I run it in a laptop.
Apart from that, I do not really know what else to look, I feel like I checked everything.

@MartyG-RealSense
Copy link
Collaborator

The RealSense Viewer tool runs directly in the RealSense SDK, whilst the ROS wrapper runs as a layer atop the SDK in the background. The wrapper also handles some functions differently from librealsense in order to maintain compatibility with ROS standards. So the camera may work correctly in the Viewer but have some performance issues in the ROS wrapper for some RealSense users.

A Jetson user at #1964 who was also using MAXN mode had performance issues such as very high CPU % utilization. They provided extensive testing logs in that case. In the end, they found that performance improved if they removed the ROS wrapper with the command sudo apt remove ros-$ROS_DISTRO-librealsense2 and rebuilt it from source code.

@MartyG-RealSense
Copy link
Collaborator

MartyG-RealSense commented Jul 24, 2022

Hi @GEngels and @Doch88 Do you require further assistance with this case, please? Thanks!

@iraadit
Copy link

iraadit commented Aug 10, 2022

Hi @MartyG-RealSense
I'll answer tomorrow
Still not there, but slowly going in the right direction :)

@MartyG-RealSense
Copy link
Collaborator

Hi @iraadit Do you have an update about this case that you can provide, please? Thanks!

@iraadit
Copy link

iraadit commented Aug 18, 2022

Hi @MartyG-RealSense,
Again sorry for the delayed answer.

I passed the last days installing Jetpack 5 and Isaac ROS (Humble with Docker)
That took me some time but I now have librealsense and realsense-ros working in the Docker.
I hoped new versions of ROS packages would maybe help, it seems at first it isn't the case.
I'll continue to explore with this version though.

In the discoveries of the last weeks:

  1. I can get 30 FPS in color and depth (without pointcloud) by setting depth_module.profile:=1280x720x30 depth_module.exposure:=32000 depth_module.enable_auto_exposure:=false in the ros2 launch realsense2_camera rs_launch.py command (confirmed using the topic /diagnostics). I also had to modifiy rs_launch.py to accept those new parameters.

  2. I profiled realsense-viewer and realsense-ros with Nsight, running on the Jetson. realsense-viewer is using the OpenGL version of the filters, while realsense-ros is using a "basic CPU" version. For poincloud, on a x86_64 host computer, the executed code is in SSE3 (what is not possible on aarch64/Jetson), already better than the "basic CPU" version. On Jetson with realsense-ros, poincloud operations is what is using must of the CPU time and the problematic function is get_texture_map.
    The CUDA flag is only changing the function depth_to_points.
    While the OpenGL and SSE3 versions are changing get_texture_map.
    I modified rs-benchmark to take a 1280x720 depth image as input, here is the output:

$ rs-benchmark 

|            |     |
|------------|-----|
|**CPU** | ARMv8 Processor rev 0 (v8l) |
|**GPU** | NVIDIA Tegra Xavier (nvgpu)/integrated |
|**Graphics Driver** |4.6.0 NVIDIA 32.7.2 |
|**Device Name** |Intel RealSense D455 |

**Stream Type**: Depth, **Resolution**: 1280 x 720

|Filter Name |Step |Median(m)   |Mean(m)  |STD(m)  |Max(m)  | Max FPS |
|------------|-----|------------|---------|--------|--------|---------|
|colorizer |Calculate |19.138 |19.773 |4.766 |76.215 |30 ![30](https://placehold.it/15/82c13e/000000?text=+) |
|pointcloud |Calculate |4.561 |8.947 |49.191 |609.226 |6 ![6](https://placehold.it/15/d6a726/000000?text=+) |
|spatial_filter |Calculate |56.714 |56.782 |4.908 |103.292 |15 ![15](https://placehold.it/15/eff70c/000000?text=+) |
|temporal_filter |Calculate |7.653 |7.970 |0.753 |10.122 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
|disparity_transform |Calculate |4.532 |4.764 |0.716 |11.145 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
|threshold_filter |Calculate |3.982 |4.537 |0.831 |8.814 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
|decimation_filter |Calculate |3.402 |3.603 |0.538 |6.285 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
|gl::colorizer | Upload |3.602 |4.205 |1.912 |21.720 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
| |Calculate |1.357 |1.951 |1.291 |8.280 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
| |Download |1.685 |2.339 |1.325 |9.559 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
| |**Total** |8.373 |8.495 |3.116 |30.229 |60 ![60](https://placehold.it/15/6fe837/000000?text=+) |
|gl::pointcloud | Upload |3.556 |4.226 |1.446 |9.747 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
| |Calculate |1.223 |1.704 |2.445 |29.984 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
| |Download |0.002 |0.008 |0.073 |0.903 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
| |**Total** |5.043 |5.939 |3.059 |37.744 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |

**Stream Type**: Color, **Resolution**: 1280 x 800

|Filter Name |Step |Median(m)   |Mean(m)  |STD(m)  |Max(m)  | Max FPS |
|------------|-----|------------|---------|--------|--------|---------|
|yuy_decoder |Calculate |2.108 |2.462 |1.046 |6.506 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
|gl::yuy_decoder | Upload |1.834 |2.377 |1.131 |6.112 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
| |Calculate |1.159 |1.583 |0.991 |5.516 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
| |Download |1.651 |2.032 |1.166 |10.268 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |
| |**Total** |5.276 |5.993 |1.970 |17.424 |90 ![90](https://placehold.it/15/35ff4d/000000?text=+) |

It can be seen that gl::pointcloud is faster than pointcloud (6ms vs 9ms, maximum of 38 vs 609ms)
From there, I changed the code of realsense-ros to use OpenGL, getting some inspiration from https://github.com/IntelRealSense/librealsense/tree/master/examples/gl
I know have get_texture_map going faster, less CPU usage and better streams. I'm still not satisfied with the result though.
I also tried to change align_depth by its OpenGL version, but with no luck until now, because of an error about an OpenGL texture.
OpenGL upload should also be used to avoid sending the frames several times to the GPU.
I'll also maybe try to convert the SSE3 instructions to NEON instructions to make it compatible with aarch64.

  1. Now, hz of poincloud is higher, but FastDDS seemed to badly cope with the transfer of the data, I switched to Cyclone DDS and got better results.

  2. When running some example app, it is possible to load a config file to the camera. Behavior of the camera will be different after applying this config (and until a reset). Is is possible to get a faster pointcloud but losing a certain amount of points (higher confidence threshold). It could be explored but we would like to keep the highest quality possible.

I'll be on vacations until the start of September and will continue to work on this when I will be back. Please, do not close the ticket :)

Thank you

@MartyG-RealSense
Copy link
Collaborator

Thanks so much @iraadit for the highly detailed feedback of your findings. It is no problem at all to keep the ticket open whilst you are on vacation and resume when you return.

@AndreV84
Copy link

@iraadit Thank you for sharing
@MartyG-RealSense what about Humble ROS support on Jetson Docker? Just about Humble aarch64 support? Could you add on it, please?

@MartyG-RealSense
Copy link
Collaborator

Hi @AndreV84 Humble is now supported by the RealSense ros2_beta wrapper, though not by earlier wrapper branches (ROS1 and ros2). At the time of writing this, only building from source code is supported for Humble. Ubuntu 22.04 (Jammy) Debians are on the roadmap. IntelRealSense/librealsense#10439 (comment) and the comments beneath it provide further information.

@iraadit
Copy link

iraadit commented Aug 29, 2022

Gld it can help you @AndreV84 :)

Hi @MartyG-RealSense

I've been able to install the last librealsense v2.51.1 as well as the branch ros2-beta of realsense-ros inside a docker container created with Nvidia Isaac ROS (with ROS 2 Humble). I could install following the first method of the Jetson install (with FORCE_RSUSB_BACKEND=false), without needing to apply the kernel patching. Running on a Nvidia Jetson AGX Xavier.

Sadly, the performances are staying the same.

ROS2 logs are now working correctly though and I observed something in the output of the command ros2 launch realsense2_camera rs_launch.py pointcloud.enable:=true decimation_filter.enable:=false pointcloud.stream_filter:=2 diagnostics_period:=1.0 enable_sync:=true align_depth.enable:=false ordered_pc:=true log_level:=debug output:=log camera_name:=realsense_cam depth_module.profile:=1280x720x30 depth_module.exposure:=32000 depth_module.enable_auto_exposure:=false:

[realsense2_camera_node-1] [DEBUG] [1661793531.267126566] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.267218956] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.267279728] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8748 ; frame_TS: 1661793531226.631592 ; ros_TS(NSec): 1661793531226631680
[realsense2_camera_node-1] [DEBUG] [1661793531.267353108] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.276654409] [FrequencyStatus_debug_logger]: TICK 5941
[realsense2_camera_node-1] [DEBUG] [1661793531.288720997] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.288904336] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8748 ; frame_TS: 1661793531226.631592 ; ros_TS(NSec): 1661793531226631680
[realsense2_camera_node-1] [DEBUG] [1661793531.289124126] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8748 ; frame_TS: 1661793531226.631592 ; ros_TS(NSec): 1661793531226631680
[realsense2_camera_node-1] [DEBUG] [1661793531.289208483] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.289259942] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.291451211] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.291857412] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.291943465] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.291999340] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8749 ; frame_TS: 1661793531259.886963 ; ros_TS(NSec): 1661793531259886848
[realsense2_camera_node-1] [DEBUG] [1661793531.292080369] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.297640419] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.297817774] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8749 ; frame_TS: 1661793531259.886963 ; ros_TS(NSec): 1661793531259886848
[realsense2_camera_node-1] [DEBUG] [1661793531.298029306] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8749 ; frame_TS: 1661793531259.886963 ; ros_TS(NSec): 1661793531259886848
[realsense2_camera_node-1] [DEBUG] [1661793531.298109599] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.298160610] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.301872740] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.302473512] [FrequencyStatus_debug_logger]: TICK 6498
[realsense2_camera_node-1] [DEBUG] [1661793531.306614820] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.306867859] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.306991674] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8740 ; frame_TS: 1661793530860.797363 ; ros_TS(NSec): 1661793530860797440
[realsense2_camera_node-1] [DEBUG] [1661793531.307089664] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.307221416] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.307278764] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8740 ; frame_TS: 1661793530860.797363 ; ros_TS(NSec): 1661793530860797440
[realsense2_camera_node-1] [DEBUG] [1661793531.307358673] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.307410324] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.309945102] [FrequencyStatus_debug_logger]: TICK 5942
[realsense2_camera_node-1] [DEBUG] [1661793531.311142390] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.311711065] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.311790046] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.311861218] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8750 ; frame_TS: 1661793531293.141846 ; ros_TS(NSec): 1661793531293141760
[realsense2_camera_node-1] [DEBUG] [1661793531.311935783] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.322884767] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.323059754] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8750 ; frame_TS: 1661793531293.141846 ; ros_TS(NSec): 1661793531293141760
[realsense2_camera_node-1] [DEBUG] [1661793531.323296984] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8750 ; frame_TS: 1661793531293.141846 ; ros_TS(NSec): 1661793531293141760
[realsense2_camera_node-1] [DEBUG] [1661793531.323403039] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.323478755] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.325643815] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.325952793] [FrequencyStatus_debug_logger]: TICK 6499
[realsense2_camera_node-1] [DEBUG] [1661793531.329300837] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.329459534] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.329527410] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8742 ; frame_TS: 1661793530927.321289 ; ros_TS(NSec): 1661793530927321344
[realsense2_camera_node-1] [DEBUG] [1661793531.329597911] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.329693212] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.329755520] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8742 ; frame_TS: 1661793530927.321289 ; ros_TS(NSec): 1661793530927321344
[realsense2_camera_node-1] [DEBUG] [1661793531.329834693] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.329915338] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.333937406] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.334200558] [FrequencyStatus_debug_logger]: TICK 6500
[realsense2_camera_node-1] [DEBUG] [1661793531.338594201] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.338807686] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.338920845] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8745 ; frame_TS: 1661793531027.102539 ; ros_TS(NSec): 1661793531027102464
[realsense2_camera_node-1] [DEBUG] [1661793531.339019315] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.339171644] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.339247328] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8745 ; frame_TS: 1661793531027.102539 ; ros_TS(NSec): 1661793531027102464
[realsense2_camera_node-1] [DEBUG] [1661793531.339446829] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.339590261] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.344026787] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.344322133] [FrequencyStatus_debug_logger]: TICK 5943
[realsense2_camera_node-1] [DEBUG] [1661793531.344363575] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.345281103] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.345347987] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8751 ; frame_TS: 1661793531326.465576 ; ros_TS(NSec): 1661793531326465536
[realsense2_camera_node-1] [DEBUG] [1661793531.345439704] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.360340065] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.360553998] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8751 ; frame_TS: 1661793531326.465576 ; ros_TS(NSec): 1661793531326465536
[realsense2_camera_node-1] [DEBUG] [1661793531.360782716] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8751 ; frame_TS: 1661793531326.465576 ; ros_TS(NSec): 1661793531326465536
[realsense2_camera_node-1] [DEBUG] [1661793531.360865697] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.360918020] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.363152236] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.363438013] [FrequencyStatus_debug_logger]: TICK 6501
[realsense2_camera_node-1] [DEBUG] [1661793531.366930833] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.367130077] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.367227299] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8754 ; frame_TS: 1661793531326.479492 ; ros_TS(NSec): 1661793531326479616
[realsense2_camera_node-1] [DEBUG] [1661793531.367320969] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.367446960] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.367522229] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8754 ; frame_TS: 1661793531326.479492 ; ros_TS(NSec): 1661793531326479616
[realsense2_camera_node-1] [DEBUG] [1661793531.367663581] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.367767076] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.371095886] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.371365982] [FrequencyStatus_debug_logger]: TICK 6502
[realsense2_camera_node-1] [DEBUG] [1661793531.376538712] [FrequencyStatus_debug_logger]: TICK 5944
[realsense2_camera_node-1] [DEBUG] [1661793531.392993599] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.393191179] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.393264592] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8755 ; frame_TS: 1661793531359.752686 ; ros_TS(NSec): 1661793531359752704
[realsense2_camera_node-1] [DEBUG] [1661793531.393350613] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8755 ; frame_TS: 1661793531359.752686 ; ros_TS(NSec): 1661793531359752704
[realsense2_camera_node-1] [DEBUG] [1661793531.393424569] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.398061619] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 3
[realsense2_camera_node-1] [DEBUG] [1661793531.398253246] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8752 ; frame_TS: 1661793531359.752686 ; ros_TS(NSec): 1661793531359752704
[realsense2_camera_node-1] [DEBUG] [1661793531.409840254] [FrequencyStatus_debug_logger]: TICK 5945
[realsense2_camera_node-1] [DEBUG] [1661793531.443292588] [FrequencyStatus_debug_logger]: TICK 5946
[realsense2_camera_node-1] [DEBUG] [1661793531.449920863] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8755 ; frame_TS: 1661793531359.752686 ; ros_TS(NSec): 1661793531359752704
[realsense2_camera_node-1] [DEBUG] [1661793531.450174094] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.450246643] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.453366480] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.453643873] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8752 ; frame_TS: 1661793531359.752686 ; ros_TS(NSec): 1661793531359752704
[realsense2_camera_node-1] [DEBUG] [1661793531.453765640] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.453823404] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.455817861] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.456126168] [FrequencyStatus_debug_logger]: TICK 6503
[realsense2_camera_node-1] [DEBUG] [1661793531.461992540] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.462154309] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.462248395] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8756 ; frame_TS: 1661793531393.024170 ; ros_TS(NSec): 1661793531393024256
[realsense2_camera_node-1] [DEBUG] [1661793531.462417013] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8756 ; frame_TS: 1661793531393.024170 ; ros_TS(NSec): 1661793531393024256
[realsense2_camera_node-1] [DEBUG] [1661793531.462491002] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.476574641] [FrequencyStatus_debug_logger]: TICK 5947
[realsense2_camera_node-1] [DEBUG] [1661793531.479878009] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 3
[realsense2_camera_node-1] [DEBUG] [1661793531.480060164] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8753 ; frame_TS: 1661793531393.024170 ; ros_TS(NSec): 1661793531393024256
[realsense2_camera_node-1] [DEBUG] [1661793531.510095844] [FrequencyStatus_debug_logger]: TICK 5948
[realsense2_camera_node-1] [DEBUG] [1661793531.534572914] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8756 ; frame_TS: 1661793531393.024170 ; ros_TS(NSec): 1661793531393024256
[realsense2_camera_node-1] [DEBUG] [1661793531.534795519] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.534886661] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.537705712] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.537940318] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8753 ; frame_TS: 1661793531393.024170 ; ros_TS(NSec): 1661793531393024256
[realsense2_camera_node-1] [DEBUG] [1661793531.538035844] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.538118217] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.540286828] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.540573502] [FrequencyStatus_debug_logger]: TICK 6504
[realsense2_camera_node-1] [DEBUG] [1661793531.543320613] [FrequencyStatus_debug_logger]: TICK 5949
[realsense2_camera_node-1] [DEBUG] [1661793531.544009678] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.544397318] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.544471914] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8757 ; frame_TS: 1661793531426.296143 ; ros_TS(NSec): 1661793531426296064
[realsense2_camera_node-1] [DEBUG] [1661793531.544561392] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8757 ; frame_TS: 1661793531426.296143 ; ros_TS(NSec): 1661793531426296064
[realsense2_camera_node-1] [DEBUG] [1661793531.544631860] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.550036860] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 3
[realsense2_camera_node-1] [DEBUG] [1661793531.550208039] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8754 ; frame_TS: 1661793531426.296143 ; ros_TS(NSec): 1661793531426296064
[realsense2_camera_node-1] [DEBUG] [1661793531.576790100] [FrequencyStatus_debug_logger]: TICK 5950
[realsense2_camera_node-1] [DEBUG] [1661793531.603993160] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8757 ; frame_TS: 1661793531426.296143 ; ros_TS(NSec): 1661793531426296064
[realsense2_camera_node-1] [DEBUG] [1661793531.604220149] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.604296378] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.607290448] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.607554912] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8754 ; frame_TS: 1661793531426.296143 ; ros_TS(NSec): 1661793531426296064
[realsense2_camera_node-1] [DEBUG] [1661793531.607694664] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.607756076] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.609915855] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.609984275] [FrequencyStatus_debug_logger]: TICK 5951
[realsense2_camera_node-1] [DEBUG] [1661793531.610455536] [FrequencyStatus_debug_logger]: TICK 6505
[realsense2_camera_node-1] [DEBUG] [1661793531.616107367] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.616285266] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.616376983] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8758 ; frame_TS: 1661793531459.566406 ; ros_TS(NSec): 1661793531459566336
[realsense2_camera_node-1] [DEBUG] [1661793531.616465181] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8758 ; frame_TS: 1661793531459.566406 ; ros_TS(NSec): 1661793531459566336
[realsense2_camera_node-1] [DEBUG] [1661793531.616578372] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.622573520] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 3
[realsense2_camera_node-1] [DEBUG] [1661793531.622763515] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8755 ; frame_TS: 1661793531459.566406 ; ros_TS(NSec): 1661793531459566336
[realsense2_camera_node-1] [DEBUG] [1661793531.643326299] [FrequencyStatus_debug_logger]: TICK 5952
[realsense2_camera_node-1] [DEBUG] [1661793531.674932122] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8758 ; frame_TS: 1661793531459.566406 ; ros_TS(NSec): 1661793531459566336
[realsense2_camera_node-1] [DEBUG] [1661793531.675179337] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.675331026] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.676982678] [FrequencyStatus_debug_logger]: TICK 5953
[realsense2_camera_node-1] [DEBUG] [1661793531.680709113] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.681003146] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8755 ; frame_TS: 1661793531459.566406 ; ros_TS(NSec): 1661793531459566336
[realsense2_camera_node-1] [DEBUG] [1661793531.681140595] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.681208983] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.683849207] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.684263216] [FrequencyStatus_debug_logger]: TICK 6506
[realsense2_camera_node-1] [DEBUG] [1661793531.689181979] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.689349765] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.689416777] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8759 ; frame_TS: 1661793531492.836914 ; ros_TS(NSec): 1661793531492836864
[realsense2_camera_node-1] [DEBUG] [1661793531.689485037] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8759 ; frame_TS: 1661793531492.836914 ; ros_TS(NSec): 1661793531492836864
[realsense2_camera_node-1] [DEBUG] [1661793531.689549425] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.696969268] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 3
[realsense2_camera_node-1] [DEBUG] [1661793531.697335530] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8756 ; frame_TS: 1661793531492.836914 ; ros_TS(NSec): 1661793531492836864
[realsense2_camera_node-1] [DEBUG] [1661793531.710121138] [FrequencyStatus_debug_logger]: TICK 5954
[realsense2_camera_node-1] [DEBUG] [1661793531.743275023] [FrequencyStatus_debug_logger]: TICK 5955
[realsense2_camera_node-1] [DEBUG] [1661793531.750541736] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8759 ; frame_TS: 1661793531492.836914 ; ros_TS(NSec): 1661793531492836864
[realsense2_camera_node-1] [DEBUG] [1661793531.750802136] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.750906910] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.754113025] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.754429140] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8756 ; frame_TS: 1661793531492.836914 ; ros_TS(NSec): 1661793531492836864
[realsense2_camera_node-1] [DEBUG] [1661793531.754589149] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.754649729] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.756765090] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.758204505] [FrequencyStatus_debug_logger]: TICK 6507
[realsense2_camera_node-1] [DEBUG] [1661793531.764000921] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.764199109] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.764270441] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8757 ; frame_TS: 1661793531526.091797 ; ros_TS(NSec): 1661793531526091776
[realsense2_camera_node-1] [DEBUG] [1661793531.764375280] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.769367263] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.769550506] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8757 ; frame_TS: 1661793531526.091797 ; ros_TS(NSec): 1661793531526091776
[realsense2_camera_node-1] [DEBUG] [1661793531.769764311] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8757 ; frame_TS: 1661793531526.091797 ; ros_TS(NSec): 1661793531526091776
[realsense2_camera_node-1] [DEBUG] [1661793531.769852252] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.769906911] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.772351604] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.772752364] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.772844306] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.772903893] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8761 ; frame_TS: 1661793531559.375000 ; ros_TS(NSec): 1661793531559375104
[realsense2_camera_node-1] [DEBUG] [1661793531.772976858] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8761 ; frame_TS: 1661793531559.375000 ; ros_TS(NSec): 1661793531559375104
[realsense2_camera_node-1] [DEBUG] [1661793531.773048478] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.777326626] [FrequencyStatus_debug_logger]: TICK 5956
[realsense2_camera_node-1] [DEBUG] [1661793531.780650796] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 3
[realsense2_camera_node-1] [DEBUG] [1661793531.780817430] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8758 ; frame_TS: 1661793531559.375000 ; ros_TS(NSec): 1661793531559375104
[realsense2_camera_node-1] [DEBUG] [1661793531.810080998] [FrequencyStatus_debug_logger]: TICK 5957
[realsense2_camera_node-1] [DEBUG] [1661793531.828247893] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8761 ; frame_TS: 1661793531559.375000 ; ros_TS(NSec): 1661793531559375104
[realsense2_camera_node-1] [DEBUG] [1661793531.828606443] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.828702448] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.831939189] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.832302603] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8758 ; frame_TS: 1661793531559.375000 ; ros_TS(NSec): 1661793531559375104
[realsense2_camera_node-1] [DEBUG] [1661793531.832426195] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.832484534] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.834560980] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.834835269] [FrequencyStatus_debug_logger]: TICK 6508
[realsense2_camera_node-1] [DEBUG] [1661793531.839021795] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.839204174] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.839279795] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8759 ; frame_TS: 1661793531592.628662 ; ros_TS(NSec): 1661793531592628736
[realsense2_camera_node-1] [DEBUG] [1661793531.839399610] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.843386988] [FrequencyStatus_debug_logger]: TICK 5958
[realsense2_camera_node-1] [DEBUG] [1661793531.846532139] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.846704533] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8759 ; frame_TS: 1661793531592.628662 ; ros_TS(NSec): 1661793531592628736
[realsense2_camera_node-1] [DEBUG] [1661793531.846949988] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8759 ; frame_TS: 1661793531592.628662 ; ros_TS(NSec): 1661793531592628736
[realsense2_camera_node-1] [DEBUG] [1661793531.847031689] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.847083084] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.850507612] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.851031932] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.851142563] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.851205222] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8763 ; frame_TS: 1661793531625.910400 ; ros_TS(NSec): 1661793531625910528
[realsense2_camera_node-1] [DEBUG] [1661793531.851270186] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8763 ; frame_TS: 1661793531625.910400 ; ros_TS(NSec): 1661793531625910528
[realsense2_camera_node-1] [DEBUG] [1661793531.851339439] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.855985161] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 3
[realsense2_camera_node-1] [DEBUG] [1661793531.856151635] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8760 ; frame_TS: 1661793531625.910400 ; ros_TS(NSec): 1661793531625910528
[realsense2_camera_node-1] [DEBUG] [1661793531.876756566] [FrequencyStatus_debug_logger]: TICK 5959
[realsense2_camera_node-1] [DEBUG] [1661793531.910037978] [FrequencyStatus_debug_logger]: TICK 5960
[realsense2_camera_node-1] [DEBUG] [1661793531.918694631] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8763 ; frame_TS: 1661793531625.910400 ; ros_TS(NSec): 1661793531625910528
[realsense2_camera_node-1] [DEBUG] [1661793531.919066174] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.919172740] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.923230491] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.923565679] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8760 ; frame_TS: 1661793531625.910400 ; ros_TS(NSec): 1661793531625910528
[realsense2_camera_node-1] [DEBUG] [1661793531.923705656] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.923779548] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.925892732] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.926176174] [FrequencyStatus_debug_logger]: TICK 6509
[realsense2_camera_node-1] [DEBUG] [1661793531.930176672] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.930512597] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793531.930593466] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8761 ; frame_TS: 1661793531659.162842 ; ros_TS(NSec): 1661793531659162880
[realsense2_camera_node-1] [DEBUG] [1661793531.930669854] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.937992475] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.938165029] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8761 ; frame_TS: 1661793531659.162842 ; ros_TS(NSec): 1661793531659162880
[realsense2_camera_node-1] [DEBUG] [1661793531.938479320] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8761 ; frame_TS: 1661793531659.162842 ; ros_TS(NSec): 1661793531659162880
[realsense2_camera_node-1] [DEBUG] [1661793531.938591263] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793531.938645250] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793531.940764931] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793531.941261793] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793531.941406794] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793531.941472110] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8765 ; frame_TS: 1661793531692.443359 ; ros_TS(NSec): 1661793531692443392
[realsense2_camera_node-1] [DEBUG] [1661793531.941538482] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8765 ; frame_TS: 1661793531692.443359 ; ros_TS(NSec): 1661793531692443392
[realsense2_camera_node-1] [DEBUG] [1661793531.941607126] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793531.945714288] [FrequencyStatus_debug_logger]: TICK 5961
[realsense2_camera_node-1] [DEBUG] [1661793531.962190424] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 3
[realsense2_camera_node-1] [DEBUG] [1661793531.962468297] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8762 ; frame_TS: 1661793531692.443359 ; ros_TS(NSec): 1661793531692443392
[realsense2_camera_node-1] [DEBUG] [1661793532.011014476] [FrequencyStatus_debug_logger]: TICK 5962
[realsense2_camera_node-1] [DEBUG] [1661793532.017573306] [realsense_cam.realsense_cam]: Frameset contain (Color, 0, RGB8) frame. frame_number: 8765 ; frame_TS: 1661793531692.443359 ; ros_TS(NSec): 1661793531692443392
[realsense2_camera_node-1] [DEBUG] [1661793532.017819177] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793532.017921935] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793532.021353311] [realsense_cam.realsense_cam]: Color stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793532.021601422] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8762 ; frame_TS: 1661793531692.443359 ; ros_TS(NSec): 1661793531692443392
[realsense2_camera_node-1] [DEBUG] [1661793532.021714581] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793532.021772953] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793532.023902842] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793532.024312275] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793532.024404184] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793532.024465500] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8763 ; frame_TS: 1661793531725.694336 ; ros_TS(NSec): 1661793531725694208
[realsense2_camera_node-1] [DEBUG] [1661793532.024535072] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793532.029865252] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793532.030088465] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8763 ; frame_TS: 1661793531725.694336 ; ros_TS(NSec): 1661793531725694208
[realsense2_camera_node-1] [DEBUG] [1661793532.030448775] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8763 ; frame_TS: 1661793531725.694336 ; ros_TS(NSec): 1661793531725694208
[realsense2_camera_node-1] [DEBUG] [1661793532.030639347] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793532.030709751] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793532.032810391] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793532.033190830] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793532.033279539] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793532.033370905] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8764 ; frame_TS: 1661793531758.958496 ; ros_TS(NSec): 1661793531758958592
[realsense2_camera_node-1] [DEBUG] [1661793532.033466366] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793532.047225986] [FrequencyStatus_debug_logger]: TICK 5963
[realsense2_camera_node-1] [DEBUG] [1661793532.048988589] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793532.049175416] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8764 ; frame_TS: 1661793531758.958496 ; ros_TS(NSec): 1661793531758958592
[realsense2_camera_node-1] [DEBUG] [1661793532.049443592] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8764 ; frame_TS: 1661793531758.958496 ; ros_TS(NSec): 1661793531758958592
[realsense2_camera_node-1] [DEBUG] [1661793532.049529838] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793532.049583345] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793532.051818040] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793532.052351897] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793532.052496770] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793532.052594664] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8765 ; frame_TS: 1661793531792.223145 ; ros_TS(NSec): 1661793531792223232
[realsense2_camera_node-1] [DEBUG] [1661793532.052672268] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793532.058241726] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793532.058535728] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8765 ; frame_TS: 1661793531792.223145 ; ros_TS(NSec): 1661793531792223232
[realsense2_camera_node-1] [DEBUG] [1661793532.058842083] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8765 ; frame_TS: 1661793531792.223145 ; ros_TS(NSec): 1661793531792223232
[realsense2_camera_node-1] [DEBUG] [1661793532.058961290] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793532.059037775] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793532.061652525] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793532.062123018] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793532.062222288] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793532.062391130] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8766 ; frame_TS: 1661793531825.485840 ; ros_TS(NSec): 1661793531825485824
[realsense2_camera_node-1] [DEBUG] [1661793532.062482464] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793532.076754850] [FrequencyStatus_debug_logger]: TICK 5964
[realsense2_camera_node-1] [DEBUG] [1661793532.079330751] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793532.079498857] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8766 ; frame_TS: 1661793531825.485840 ; ros_TS(NSec): 1661793531825485824
[realsense2_camera_node-1] [DEBUG] [1661793532.079705781] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8766 ; frame_TS: 1661793531825.485840 ; ros_TS(NSec): 1661793531825485824
[realsense2_camera_node-1] [DEBUG] [1661793532.079790202] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793532.079838141] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793532.081999777] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793532.082755822] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793532.082888535] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793532.082961339] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8767 ; frame_TS: 1661793531858.749268 ; ros_TS(NSec): 1661793531858749184
[realsense2_camera_node-1] [DEBUG] [1661793532.083038048] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793532.091445534] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793532.091630185] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8767 ; frame_TS: 1661793531858.749268 ; ros_TS(NSec): 1661793531858749184
[realsense2_camera_node-1] [WARN] [1661793532.091838070] [realsense_cam.realsense_cam]: No stream match for pointcloud chosen texture Process - Color
[realsense2_camera_node-1] [DEBUG] [1661793532.091913274] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8767 ; frame_TS: 1661793531858.749268 ; ros_TS(NSec): 1661793531858749184
[realsense2_camera_node-1] [DEBUG] [1661793532.092010208] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793532.092062627] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793532.094226791] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0
[realsense2_camera_node-1] [DEBUG] [1661793532.094640448] [realsense_cam.realsense_cam]: Frameset arrived.
[realsense2_camera_node-1] [DEBUG] [1661793532.094728837] [realsense_cam.realsense_cam]: List of frameset before applying filters: size: 1
[realsense2_camera_node-1] [DEBUG] [1661793532.094792457] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8768 ; frame_TS: 1661793531892.010742 ; ros_TS(NSec): 1661793531892010752
[realsense2_camera_node-1] [DEBUG] [1661793532.094866862] [realsense_cam.realsense_cam]: num_filters: 11
[realsense2_camera_node-1] [DEBUG] [1661793532.106918505] [realsense_cam.realsense_cam]: List of frameset after applying filters: size: 2
[realsense2_camera_node-1] [DEBUG] [1661793532.107124022] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8768 ; frame_TS: 1661793531892.010742 ; ros_TS(NSec): 1661793531892010752
[realsense2_camera_node-1] [DEBUG] [1661793532.107353732] [realsense_cam.realsense_cam]: Frameset contain (Depth, 0, Z16) frame. frame_number: 8768 ; frame_TS: 1661793531892.010742 ; ros_TS(NSec): 1661793531892010752
[realsense2_camera_node-1] [DEBUG] [1661793532.107474827] [realsense_cam.realsense_cam]: frame: 1280 x 720
[realsense2_camera_node-1] [DEBUG] [1661793532.107585394] [realsense_cam.realsense_cam]: publishFrame(...)
[realsense2_camera_node-1] [DEBUG] [1661793532.109725844] [realsense_cam.realsense_cam]: Depth stream published, message address: 0xffff41209ea0

The following snippets are cleaned for brievety.

Scenario 1 is the best scenario would be, with depth and color "arriving at the same time":

Frameset arrived.
List of frameset before applying filters: size: 2
Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8756
Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8756 
List of frameset after applying filters: size: 3
Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8753 
Frameset contain (Color, 0, RGB8) frame. frame_number: 8756 
frame: 1280 x 720
publishFrame(...)
Color stream published
Frameset contain (Depth, 0, Z16) frame. frame_number: 8753 
frame: 1280 x 720
publishFrame(...)
Depth stream published

But two other scenarios can happen, and are not desirable.

Scenario 2 has only depth before filters:

Frameset arrived.
List of frameset before applying filters: size: 1
Frameset contain (Depth, 0, Z16 0) frame. frame_number: 8751
num_filters: 11
List of frameset after applying filters: size: 2
Frameset contain (Depth, 0, XYZ32F) frame. frame_number: 8751 
Frameset contain (Depth, 0, Z16) frame. frame_number: 8751 
frame: 1280 x 720
publishFrame(...)
Depth stream published

Scenario 3 has only color before filters:

Frameset arrived.
List of frameset before applying filters: size: 1
Frameset contain (Color, 0, RGB8 3) frame. frame_number: 8742 
num_filters: 11
List of frameset after applying filters: size: 1
Frameset contain (Color, 0, RGB8) frame. frame_number: 8742 
frame: 1280 x 720
publishFrame(...)
Color stream published

Perfect execution should always be scenario 1, always having pointcloud data with color texture available as an output.
The frames seem to not be in sync, and it can be seen that the frame number of the filtered frames are going back and forth..

Would you have any idea on how to avoid that?

Thank you

@MartyG-RealSense
Copy link
Collaborator

@iraadit You should not need to set enable_sync to true in your launch instruction as the ROS wrapper documentation for this parameter states that it happens automatically when filters such as pointcloud are enabled. Likewise, the decimation filter is false by default in the rs_launch.py file and so should not need setting to false in the launch instruction.

How does it perform if you remove depth_module.exposure:=32000 depth_module.enable_auto_exposure:=false and use auto-exposure?

@iraadit
Copy link

iraadit commented Aug 30, 2022

Hi @MartyG-RealSense,

enble_sync as well as decimation_filter.enable are in the launch command because it is easier for me that way to try out different parameters (I don't have to remember their name when I want to try them out, but just to change true to false (and vice-versa)).

By the way, I think that pointcloud.enable:=true must also turn align_depth.enable to true, what is happening then if I add align_depth.enable:=false in the launch command? Is it ignored?

As explained in the point 1 of #2396 (comment), I have to add depth_module.exposure:=32000 depth_module.enable_auto_exposure:=false to be able to get 30 FPS in input for depth, if not it saturates at 15FPS. By default, depth_module.enable_auto_exposure is true, but doesn't seem to work. (???) If I put depth_module.enable_auto_exposure to false, it will use the default value of depth_module.exposure that is 33000 (33ms) and seems to be too much to get 30FPS. If I change the value of depth_module.exposure to be lower (here 32000), it can runt 30FPS. These FPS values are seen thanks to the /diagnostics topic.

@MartyG-RealSense
Copy link
Collaborator

I would assume that a 'false' state of align_depth will be overriden to 'true' if the pointcloud filter is enabled.

Your colleague @Doch88 reported earlier in the discussion that enabling auto_exposure and disabling auto_exposure_priority instead of using manual exposure in order to enforce a constant FPS) did not seem to work.

#2396 (comment) states that you cannot reduce your resolution from 1280x720 to 848x480 to improve performance.

I believe we have covered almost all of the available possibilities for improving performance during this 2 month discussion, unfortunately.

@iraadit
Copy link

iraadit commented Aug 31, 2022

Hi @MartyG-RealSense ,
I believe there is still more into this, by modifying code if needed, I'll continue to look into it :)

@MartyG-RealSense
Copy link
Collaborator

Thanks so much @iraadit :) Please do feedback any findings that you make.

@MartyG-RealSense
Copy link
Collaborator

Hi @iraadit Do you have an update about this case that you can provide, please? Thanks!

@iraadit
Copy link

iraadit commented Sep 12, 2022

Hi @MartyG-RealSense,

I finally found a way to get a (nearly) 30FPS textured pointcloud, but it is suboptimal. It consists of these different elements:

  1. 1280x720x30 for depth and color
  2. decimation_filter.enable:=true decimation_filter.filter_magnitude:=3 (kinda work with :=2 (default))
  3. json_file_path:=ABSOLUTE_PATH_TO/HighAccuracyPreset.json
  4. depth_module.enable_auto_exposure:=false depth_module.exposure:=32000
  5. OpenGL implementation of get_texture_map
  6. Using the script topic_hz.py

With that, I can get nearly 30FPS (more than 25) on color, depth and pointcloud.
But it is at the expense of a lower resolution of the pointcloud (due to use of the High Accuracy preset followed by the decimation filter).

topic_hz.py

With rviz2, I could see the streams framerates dropping when I was using ros2 topic hz. Searching for it on internet, I found this post describing the same thing, started to write my own suscriber to calculate the FPS and then discovered it had already been done on realsense-ros repo. For reference, the script is here: realsense2_camera/scripts/topic_hz.py. Using this script, I can (finally) get good framerates values. The script is only present in the ros2-beta branch (as it seems it wasn't a problem with ROS 1).

Depth module

32000 instead of 33000 or auto (because then saturate at 15FPS).

For the exposure of the depth module, would there be something similar to auto_exposure_priority for the color stream?

Preset

I got the preset from the page D400-Series-Visual-Presets wiki on the librealsense repo.

Decimation

On this wiki page, it is also said:

The key to good depth is to start from our recommended defaults:

D435: Use 848x480 resolution @30fps, with auto-exposure. Use post processing with downsample 2.
D415: Use 1280x720 resolution @30fps, with auto-exposure. Use post processing with downsample 3.

What would be the recommended default for D455?

Concerning decimation, I also saw on the web documentation of intelrealsense that there would be a better implementation of decimation for collision avoidance problems. I'll add it in our code.

Decimation

Downsample Step

Downsampling is a very common first step in any depth processing algorithm. The key observation is that downsampling reduces spatial (X-Y) accuracy but preserves Z-accuracy.
It is so widespread that the SDK offers built-in downsampling method in form of rs2::decimation_filter.
It's important to note that using standard OpenCV downsampling is not ideal for depth images.
In this example we show another correct way to implement depth downsampling. It is conceptually similar to rs2::decimation_filter, picking one of the non-zero depth values for every 4x4 block, but unlike rs2::decimation_filter it is picking the closest depth value instead of median value. This makes sense in context of collision avoidance, since we want to preserve the minimal distance to an object.

Naive implementation for this approach:

C++

for (int y = 0; y < sizeYresized; y++)
        for (int x = 0; x < source.cols; x += DOWNSAMPLE_FACTOR)
        {
            uint16_t min_value = MAX_DEPTH;

            // Loop over 4x4 quad
            for (int i = 0; i < DOWNSAMPLE_FACTOR; i++)
                for (int j = 0; j < DOWNSAMPLE_FACTOR; j++)
                {
                    auto pixel = source.at<uint16_t>(y * DOWNSAMPLE_FACTOR + i, x + j);
                    // Only include non-zero pixels in min calculation
                    if (pixel) min_value = std::min(min_value, pixel);
                }

            // If no non-zero pixels were found, mark the output as zero
            if (min_value == MAX_DEPTH) min_value = 0;

            pDest->at<uint16_t>(y, x / DOWNSAMPLE_FACTOR) = min_value;
        }

OpenGL

I also have a modification of the code to execute part of the pointcloud calculation with OpenGL. I should test without this modification to see if I still get the nearly 30 FPS. (CPU usage is for sure down with this modification, as well as pointcloud processing is faster).

Conclusion

Can you help me with any of the questions I have?

I will finally have to let this case at rest in the coming days to work on other things. I'm still not satisfied with the result and it can be said for sure that the combination of D455, ROS 2 (Humble - Isaac), librealsense 2.51.1, realsense-ros (ros2-beta) and trying to get a textured pointcloud with the highest resolution possible on a Jetson AGX Xavier (Jetpack 4 or 5) is giving subpar results for now.

I will submit some Pull Requests in the coming days.

Thank you for your help

@MartyG-RealSense
Copy link
Collaborator

Thanks so much @iraadit for sharing such detailed feedback of your tests!

Using the Medium Density preset - MedDensityPreset.json - may provide a better image than High Accuracy, as HA tends to greatly reduce the amount of detail on the depth image due to confidence-filtering of depth coordinates, whilst Medium Density provides a good balance between accuracy and the amount of detail on the image.

Regarding a similar option to the RGB-only auto_exposure_priority for the depth stream: when auto-exposure is disabled then a constant FPS can be enforced if the manual epxosure value is within a certain range, as mentioned earlier in this discussion at #2396 (comment) but there is not a direct depth-stream equivalent for auto_exposue_priority

The recommended resolution setting for optimal depth accuracy on the D455 camera model is the same as those for D435 / D435i - 848x480 depth at 30 FPS.

@MartyG-RealSense
Copy link
Collaborator

Does anyone who commented on this case require further assistance, please? Thanks!

@AndreV84
Copy link

not from my side. thanks for following up though

@MartyG-RealSense
Copy link
Collaborator

Thanks very much, @AndreV84 :)

@AndreV84
Copy link

@MartyG-RealSense do you know by any chance
a framework/model/ example
which will detect 3d objects from recorded by realsense pointcloud files?
Thanks

@MartyG-RealSense
Copy link
Collaborator

MartyG-RealSense commented Sep 19, 2022

@AndreV84 If you mean using .ply pointcloud files then PyTorch3D might be a suitable option for object detection if you are able to use Python.

PyTorch3D
https://pytorch3d.org/

https://ai.facebook.com/blog/building-3d-deep-learning-models-with-pytorch3d/

Loading ply files into PyTorch3D
https://pytorch3d.org/docs/meshes_io

@iraadit
Copy link

iraadit commented Sep 27, 2022

Hi @MartyG-RealSense

Sorry, I've been busy on something else for the last two weeks.

I'll work again on the realsense pointcloud optimization this week.

@MartyG-RealSense
Copy link
Collaborator

No problem at all, @iraadit - thanks very much for the update and good luck!

@MartyG-RealSense
Copy link
Collaborator

Hi @iraadit Do you have an update about this case that you can provide, please? Thanks!

@iraadit
Copy link

iraadit commented Jan 10, 2023

Hi @MartyG-RealSense,
We decided to wrap up our work on the realsense optimization a moment ago, it went better thanks to the different tricks mentioned before, but there would certainly still be room to optimize more.
Thank you for your help.
You can close the ticket.

@MartyG-RealSense
Copy link
Collaborator

Thanks very much @iraadit for the update!

As you are happy to close the ticket and there have not been further comments from other RealSense users on this discussion, I will close it. Thanks again!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

5 participants