forked from facebook/Ax
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Creating preference testing stub (facebook#2443)
Summary: Adding `preference_stubs.py` and migrate `PairwiseModelBridgeTest` logic to it. Reviewed By: esantorella Differential Revision: D57131012
- Loading branch information
1 parent
6676720
commit 224d73f
Showing
2 changed files
with
164 additions
and
108 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
from typing import Any, Callable, Dict, List, Optional | ||
|
||
import numpy as np | ||
from ax.core import Arm, GeneratorRun | ||
from ax.core.experiment import Experiment | ||
from ax.core.parameter import RangeParameter | ||
from ax.core.types import TEvaluationOutcome, TParameterization | ||
from ax.service.utils.instantiation import InstantiationBase | ||
from ax.utils.common.constants import Keys | ||
from ax.utils.common.typeutils import checked_cast | ||
|
||
# from ExperimentType in ae/lazarus/fb/utils/if/ae.thrift | ||
PBO_EXPERIMENT_TYPE: str = "PREFERENCE_LEARNING" | ||
PE_EXPERIMENT_TYPE: str = "PREFERENCE_EXPLORATION" | ||
|
||
|
||
def sum_utility(parameters: TParameterization) -> float: | ||
"""Test utility function that sums over parameter values""" | ||
values = [checked_cast(float, v) for v in parameters.values()] | ||
return sum(values) | ||
|
||
|
||
def pairwise_pref_metric_eval( | ||
parameters: Dict[str, TParameterization], | ||
utility_func: Callable[[TParameterization], float] = sum_utility, | ||
) -> Dict[str, TEvaluationOutcome]: | ||
"""evaluating pairwise comparisons using utility_func""" | ||
assert len(parameters.keys()) == 2 | ||
arm1, arm2 = list(parameters.keys()) | ||
arm1_sum, arm2_sum = sum_utility(parameters[arm1]), sum_utility(parameters[arm2]) | ||
is_arm1_preferred = int(arm1_sum - arm2_sum > 0) | ||
return { | ||
arm1: {Keys.PAIRWISE_PREFERENCE_QUERY.value: is_arm1_preferred}, | ||
arm2: {Keys.PAIRWISE_PREFERENCE_QUERY.value: 1 - is_arm1_preferred}, | ||
} | ||
|
||
|
||
def experimental_metric_eval( | ||
parameters: Dict[str, Any], metric_names: List[str] | ||
) -> Dict[str, Any]: | ||
return { | ||
arm_name: {metric_name: np.random.random() for metric_name in metric_names} | ||
for arm_name, _ in parameters.items() | ||
} | ||
|
||
|
||
def get_pbo_experiment( | ||
num_parameters: int = 2, | ||
num_experimental_metrics: int = 3, | ||
tracking_metric_names: Optional[List[str]] = None, | ||
num_experimental_trials: int = 3, | ||
num_preference_trials: int = 3, | ||
num_preference_trials_w_repeated_arm: int = 5, | ||
include_sq: bool = True, | ||
partial_data: bool = False, | ||
) -> Experiment: | ||
"""Create synthetic preferential BO (not preference exploration) experiment""" | ||
tracking_metric_names = [ | ||
f"metric{i}" for i in range(1, num_experimental_metrics + 1) | ||
] | ||
|
||
sq = {f"x{i}": 0.0 for i in range(1, num_parameters + 1)} if include_sq else None | ||
|
||
parameters = [ | ||
{ | ||
"name": f"x{i}", | ||
"type": "range", | ||
"bounds": [0.0, 1.0], | ||
} | ||
for i in range(1, num_parameters + 1) | ||
] | ||
experiment = InstantiationBase.make_experiment( | ||
name="pref_experiment", | ||
# pyre-ignore: Incompatible parameter type [6] | ||
parameters=parameters, | ||
objectives={Keys.PAIRWISE_PREFERENCE_QUERY.value: "maximize"}, | ||
tracking_metric_names=tracking_metric_names, | ||
is_test=True, | ||
# pyre-ignore: Incompatible parameter type [6] | ||
status_quo=sq, | ||
) | ||
|
||
# Adding arms with experimental metrics | ||
for _ in range(num_experimental_trials): | ||
arm = {} | ||
for param_name, param in experiment.search_space.parameters.items(): | ||
lb = checked_cast(RangeParameter, param).lower | ||
ub = checked_cast(RangeParameter, param).upper | ||
arm[param_name] = np.random.uniform(low=lb, high=ub) | ||
gr = ( | ||
# pyre-ignore: Incompatible parameter type [6] | ||
GeneratorRun([Arm(arm), Arm(sq)]) | ||
if include_sq | ||
else GeneratorRun([Arm(arm)]) | ||
) | ||
trial = experiment.new_batch_trial(generator_run=gr) | ||
raw_data = experimental_metric_eval( | ||
parameters={a.name: a.parameters for a in trial.arms}, | ||
metric_names=tracking_metric_names, | ||
) | ||
# create incomplete data by dropping the first metric | ||
if partial_data: | ||
for v in raw_data.values(): | ||
del v[tracking_metric_names[-1]] | ||
trial.attach_batch_trial_data(raw_data=raw_data) | ||
trial.mark_running(no_runner_required=True) | ||
trial.mark_completed() | ||
|
||
# Adding arms with preferential queries | ||
for _ in range(num_preference_trials): | ||
gr = GeneratorRun( | ||
[ | ||
Arm( | ||
{ | ||
pn: np.random.uniform( | ||
low=checked_cast(RangeParameter, p).lower, | ||
high=checked_cast(RangeParameter, p).upper, | ||
) | ||
for pn, p in experiment.search_space.parameters.items() | ||
} | ||
) | ||
for _ in range(2) | ||
] | ||
) | ||
trial = experiment.new_batch_trial(generator_run=gr) | ||
trial.attach_batch_trial_data( | ||
raw_data=pairwise_pref_metric_eval( | ||
parameters={a.name: a.parameters for a in trial.arms} | ||
) | ||
) | ||
trial.mark_running(no_runner_required=True) | ||
trial.mark_completed() | ||
|
||
# Adding preferential queries using previously evaluated arms | ||
for _ in range(num_preference_trials_w_repeated_arm): | ||
arms = np.random.choice( | ||
list(experiment.arms_by_name.values()), 2, replace=False | ||
) | ||
trial = experiment.new_batch_trial() | ||
trial.add_arms_and_weights(arms=arms) | ||
trial.attach_batch_trial_data( | ||
raw_data=pairwise_pref_metric_eval( | ||
parameters={a.name: a.parameters for a in trial.arms} | ||
) | ||
) | ||
trial.mark_running(no_runner_required=True) | ||
trial.mark_completed() | ||
|
||
return experiment |