Skip to content

DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer

License

Notifications You must be signed in to change notification settings

JDACS4C-IMPROVE/DRPreter

 
 

Repository files navigation

Candelized DRPreter (Drug Response PREdictor and interpreTER)

DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer

This repository introduces the CANDLE-compliant codebase for the DRPreter Model.

Installation

To install the necessary packages to run the training we can use conda:

conda create -n drpreter python=3.11 pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

conda activate drpreter

This will create and activate an environment called drpreter.

Next we will need to fill the rest of the dependencies that rely on an active torch installation, we can do this with pip and requirements.txt

pip install -r requirements.txt

This will install the remaining packages needed into the environment.

There are a few specific packages that requires their own individual install depending on the version of PyTorch and version of CUDA your system has.

pip install pyg-lib torch-cluster torch-scatter torch-sparse torch-spline-conv -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html`

pip install  dgl -f https://data.dgl.ai/wheels/$(CUDA)/repo.html
pip install  dglgo -f https://data.dgl.ai/wheels-test/repo.html

Where $(TORCH) is your current version of PyTorch and $(CUDA) is the version of CUDA. For the requirements file listed, this model runs on PyTorch 2.0 with CUDA 11.8

https://data.pyg.org/whl/torch-2.0.1+cu118.html

To Run the Model

Without Singularity

To run the model after creating the conda environment, we can run the following commands:

To preprocess:

python preprocess.py --train_data_name ccle --val_data_name ccle --test_data_name ccle --train_split_file_name split_0_tr_id --val_split_file_name split_0_vl_id --test_split_file_name split_0_te_id --y_col_name CancID --outdir csa_data/ml_data

To train:

python train.py --train_data_name ccle --val_data_name ccle --test_data_name ccle --train_split_file_name split_0_tr_id --val_split_file_name split_0_vl_id --test_split_file_name split_0_te_id --y_col_name CancID
sh DRPreter/train.sh $(CUDA_VISIBLE_DEVICES) $(CANDLE_DATA_DIR)

With Singularity

  1. The first step is to build the singularity container.
  2. Set the $CANDLE_DATA_DIR and $CUDA_VISIBLE_DEVICES environment variables.
  3. Use the different shell scripts for training and evaluation. (train.sh & infer.sh)

Building the Container

To build the container, you will need to run the following command:

singularity build --fakeroot DRPreter.sif DRPreter.def

This requires the DRPreter.def file in order to build DRPreter.sif

About

DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 97.8%
  • Shell 2.2%