This repository demonstrates how to use the IMPROVE library v0.1.0 for building a drug response prediction (DRP) model using LightGBM (LGBM), and provides examples with the benchmark cross-study analysis (CSA) dataset.
This version, tagged as v0.1.0-2024-09-27
, introduces a new API which is designed to encourage broader adoption of IMPROVE and its curated models by the research community.
Installation instructions are detialed below in Step-by-step instructions.
Conda yml
file conda_wo_candle.yml
ML framework:
- LightGBM - machine learning framework for building the prediction model
IMPROVE dependencies:
Benchmark data for cross-study analysis (CSA) can be downloaded from this site.
The data tree is shown below:
csa_data/raw_data/
├── splits
│ ├── CCLE_all.txt
│ ├── CCLE_split_0_test.txt
│ ├── CCLE_split_0_train.txt
│ ├── CCLE_split_0_val.txt
│ ├── CCLE_split_1_test.txt
│ ├── CCLE_split_1_train.txt
│ ├── CCLE_split_1_val.txt
│ ├── ...
│ ├── GDSCv2_split_9_test.txt
│ ├── GDSCv2_split_9_train.txt
│ └── GDSCv2_split_9_val.txt
├── x_data
│ ├── cancer_copy_number.tsv
│ ├── cancer_discretized_copy_number.tsv
│ ├── cancer_DNA_methylation.tsv
│ ├── cancer_gene_expression.tsv
│ ├── cancer_miRNA_expression.tsv
│ ├── cancer_mutation_count.tsv
│ ├── cancer_mutation_long_format.tsv
│ ├── cancer_mutation.parquet
│ ├── cancer_RPPA.tsv
│ ├── drug_ecfp4_nbits512.tsv
│ ├── drug_info.tsv
│ ├── drug_mordred_descriptor.tsv
│ └── drug_SMILES.tsv
└── y_data
└── response.tsv
lgbm_preprocess_improve.py
- takes benchmark data files and transforms into files for trianing and inferencelgbm_train_improve.py
- trains a LightGBM-based DRP modellgbm_infer_improve.py
- runs inference with the trained LightGBM modelmodel_params_def.py
- definitions of parameters that are specific to the modellgbm_params.txt
- default parameter file (parameter values specified in this file override the defaults)
git clone git@github.com:JDACS4C-IMPROVE/LGBM.git
cd LGBM
git checkout v0.1.0-2024-09-27
Option 1: create conda env using yml
conda env create -f conda_wo_candle.yml
Option 2: use conda_env_py37.sh
Option 3: use these commands
CONDA_ENV_NAME=lgbm_py37
conda create -n $CONDA_ENV_NAME python=3.7 pip lightgbm=3.1.1 --yes
conda activate $CONDA_ENV_NAME
conda install conda-forge::pandas=1.3.0
conda install conda-forge::scikit-learn=1.0.2
conda install conda-forge::pyyaml=6.0
conda install conda-forge::pyarrow=9.0.0
source setup_improve.sh
This will:
- Download cross-study analysis (CSA) benchmark data into
./csa_data/
. - Clone IMPROVE repo (and checkout
v0.1.0-2024-09-27
) outside the LGBM model repo. - Set up
PYTHONPATH
(adds IMPROVE repo).
python lgbm_preprocess_improve.py --input_dir ./csa_data/raw_data --output_dir exp_result
Preprocesses the CSA data and creates train, validation (val), and test datasets.
Generates:
- three model input data files:
train_data.parquet
,val_data.parquet
,test_data.parquet
- three tabular data files, each containing the drug response values (i.e. AUC) and corresponding metadata:
train_y_data.csv
,val_y_data.csv
,test_y_data.csv
exp_result
├── param_log_file.txt
├── test_data.parquet
├── test_y_data.csv
├── train_data.parquet
├── train_y_data.csv
├── val_data.parquet
├── val_y_data.csv
├── x_data_gene_expression_scaler.gz
└── x_data_mordred_scaler.gz
python lgbm_train_improve.py --input_dir exp_result --output_dir exp_result
Trains a LightGBM model using the model input data: train_data.parquet
(training), val_data.parquet
(early stopping).
Generates:
- trained model:
model.txt
- predictions on val data (tabular data):
val_y_data_predicted.csv
- prediction performance scores on val data:
val_scores.json
exp_result
├── model.txt
├── param_log_file.txt
├── test_data.parquet
├── test_y_data.csv
├── train_data.parquet
├── train_y_data.csv
├── val_data.parquet
├── val_scores.json
├── val_y_data.csv
├── val_y_data_predicted.csv
├── x_data_gene_expression_scaler.gz
└── x_data_mordred_scaler.gz
python lgbm_infer_improve.py --input_data_dir exp_result --input_model_dir exp_result --output_dir exp_result --calc_infer_score true
Evaluates the performance on a test dataset with the trained model.
Generates:
- predictions on test data (tabular data):
test_y_data_predicted.csv
- prediction performance scores on test data:
test_scores.json
exp_result
├── model.txt
├── param_log_file.txt
├── test_data.parquet
├── test_scores.json
├── test_y_data.csv
├── test_y_data_predicted.csv
├── train_data.parquet
├── train_y_data.csv
├── val_data.parquet
├── val_scores.json
├── val_y_data.csv
├── val_y_data_predicted.csv
├── x_data_gene_expression_scaler.gz
└── x_data_mordred_scaler.gz