-
The GUI-based MATLAB toolbox including algorithms for magnetic susceptibility source separation based on convex optimization (χ-separation or chi-separation; H. Shin et al., Neuroimage, 2021) and deep learning-based reconstruction. The toolbox also supports phase preprocessing (e.g. phase unwrapping and background removal) powered by MEDI, STI Suite, SEGUE, and mritools toolboxs (see the Chisep_script.m file for details).
-
The χ-separation toolbox includes the following features:
- DICOM/NIFTI data compatibility
- QSMnet: Quantitative susceptibility mapping (QSM) reconstruction algorithm based on deep neural network (QSMnet; J. Yoon et al., Neuroimage, 2018)
- χ-separation using R2' (or R2* ): Magnetic susceptibility source separation algorithms based on convex optimization (χ-separation; H. Shin et al., Neuroimage, 2021) that share similar contrasts and optimization parameters with either MEDI+0 (Liu et al., MRM, 2018) or iLSQR (Li et al., Neuroimage, 2015) algorithms. The toolbox also provides the option to use pseudo R2 map if R2 measurement is not availabe (using R2' is reconmmanded for accurate estimation).
- χ-sepnet using R2' (or R2* ): A U-Net-based neural network that reconstructs COSMOS-quality χ-separation using R2' and phase. In case R2 is not measured, another neural network is trained to estimate χ-separation maps from R2* and phase.
-
Last update: June-11-2024 (Sooyeon Ji, Hyeong-Geol Shin, Jun-Hyeok Lee, Minjoon Kim, Kyeongseon Min)
- H. Shin, J. Lee, Y. H. Yun, S. H. Yoo, J. Jang, S.-H. Oh, Y. Nam, S. Jung, S. Kim, F. Masaki, W. Kim, H. J. Choi, J. Lee. χ-separation: Magnetic susceptibility source separation toward iron and myelin mapping in the brain. Neuroimage, 2021 Oct; 240:118371.
- J. Yoon, E. Gong, I. Chatnuntawech, B. Bilgic, J. Lee, W. Jung, J. Ko, H. Jung, K. Setsompop, G. Zaharchuk, E.Y. Kim, J. Pauly, J. Lee. Quantitative susceptibility mapping using deep neural network: QSMnet. Neuroimage. 2018;179:199-206
-
Common
- MATLAB (tested in R2019a-R2021a)
-
Additional
- For QSMnet and χ-sepnet, Deep Learning MATLAB Toolbox Converter for ONNX Model Format (https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format)
- For DICOM/NIFTI read and phase processing, see https://www.dropbox.com/sh/3zafav50bfnruuu/AABVVYpdsznsRXKy8YKK4ybla?dl=0
- snu.list.software@gmail.com
- sin4109@gmail.com (Hyeong-Geol Shin, PhD)