Skip to content

JakobCode/UncertaintyInNeuralNetworks_Resources

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 

Repository files navigation

Implementations of Uncertainty Quantification Methods for Neural Networks

This repository collects available implementations for uncertainty quantification and calibration methods in neural networks. The list mainly links to resources which are provided by the authors of the corresponding approaches or to other collections of implementations.

Method Type             Approch             Paper(s) Authors official Repository Framework Link to Repository
Calibration Temperature Scaling C. Guo, G. Pleiss, Y. Sun, K. Q. Weinberger, "On calibration of modern neural networks", International Conference on Machine Learning (2017). [paper] yes PyTorch https://github.com/gpleiss/temperature_scaling
Single Deterministic Neural Network Misclassification and Out-of-Distribution detection based on the softmax output. D. Hendrycks and K. Gimpel. "A baseline for detecting misclassified and out-of-distribution examples in neural networks." arXiv preprint arXiv:1610.02136 (2016). [paper] yes TensorFlow https://github.com/hendrycks/error-detection
Single Deterministic Neural Network & Calibration Implementation of Odin and Temperature Scalling for out-of-distribution detection. S. Liang, Y. Li and R. Srikant, "Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks", International Conference on Learning Representations (2018). [paper] yes PyTorch https://github.com/facebookresearch/odin
Single Deterministic Neural Network Outlier exposure - Learn heuristic for out-of-distribution detection from out-of-distribution examples. Hendrycks, Dan, Mantas Mazeika, and Thomas Dietterich. "Deep anomaly detection with outlier exposure." arXiv preprint arXiv:1812.04606 (2018). [paper] yes PyTorch https://github.com/hendrycks/outlier-exposure
Single Deterministic Neural Network Deep Mahalanobis Detector for Out-of-Dsitribution detection K. Lee, K. Lee, H. Lee, J. Shin, “A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks”, NeurIPS 2018. [paper] yes PyTorch https://github.com/pokaxpoka/deep_Mahalanobis_detector
Single Deterministic Neural Network Evidential Neural Networks for Classification tasks M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to quantify classification uncertainty” , NeurIPS 2018. [paper] partially Tensorflow & PyTorch https://github.com/dougbrion/pytorch-classification-uncertainty

https://muratsensoy.github.io/uncertainty.html
Single Deterministic Neural Network Dirichlet Prior Networks A. Malinin and M. Gales, “Predictive uncertainty estimation via prior networks” NeurIPS 2018. [paper]

A. Malinin and M. Gales, “Reverse kl-divergence training of prior networks: Improved uncertainty and adversarial robustness” </ i>, NeurIPS 2019. [paper]
yes PyTorch https://github.com/KaosEngineer/PriorNetworks
Bayesian Neural Network Bayes By Backprop (BBB) C. Blundell, J. Cornebise, K. Kavukcuoglu & D. Wierstra "Weight Uncertainty in Neural Network", ICML 2015. [paper] no PyTorch https://github.com/nitarshan/bayes-by-backprop

https://github.com/ThirstyScholar/bayes-by-backprop
Bayesian Neural Network Example implementation of Multiplicative Normalizing Flows C. Louizos and M. Welling, "Multiplicative Normalizing Flows for Variational Bayesian Neural Networks", ICML 2017. [paper] no TensorFlow & PyTorch https://github.com/AMLab-Amsterdam/MNF_VBNN

https://github.com/janosh/torch-mnf
Bayesian Neural Network Monte Carlo Dropout Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning." ICML 2016. [paper] yes TensorFlow https://github.com/yaringal/DropoutUncertaintyExps
Bayesian Neural Network VOGN Optimizer and presentation of Bayesian principles in neural networks. M. Khan, D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal and A. Y. Srivastava, "Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam", ICML 2018. [paper] yes PyTorch https://github.com/team-approx-bayes/dl-with-bayes
Bayesian Neural Network Provides facilities to easily train your PyTorch neural network models using variational inference. - no PyTorch https://github.com/ctallec/pyvarinf
Bayesian Neural Network Stochastic Weight Averaging-Gaussian (SWAG) W. J. Maddox, et al. "A simple baseline for bayesian uncertainty in deep learning." NeurIPS 2019: 13153-13164. [paper] yes PyTorch https://github.com/wjmaddox/swa_gaussian
Bayesian Neural Network Deterministic Variational Inference A. Wu, S. Nowozin, E. Meeds, R. E. Turner, J. M. Hernandez-Lobato, A. L. Gaunt, Deterministic Variational Inference for Robust Bayesian Neural Networks, ICLR 2019. [paper] partially TensorFlow & PyTorch https://github.com/Microsoft/deterministic-variational-inference

https://github.com/markovalexander/DVI
Bayesian Neural Network Laplace Approximation with four different approximations of the curvature Estimating Model Uncertainty of Neural Networks in Sparse Information Form J. Lee, M. Humt, J. Feng, R. Triebel, ICLR 2020. [paper]

Bayesian Optimization Meets Laplace Approximation for Robotic Introspection M. Humt, J. Lee, R. Triebel, IROS 2020 Workshop. [paper]

"Learning Multiplicative Interactions with Bayesian Neural Networks for Visual-Inertial Odometry", K. Shinde, J. Lee, M. Humt, A. Sezgin, R. Triebel, ICLR 2020 Workshop. [paper]
yes PyTorch https://github.com/DLR-RM/curvature
Ensembles Deep Ensembles B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty estimation using deep ensembles” NeurIPS 2017. [paper] no TensorFlow https://github.com/vvanirudh/deep-ensembles-uncertainty

https://github.com/axelbrando/Mixture-Density-Networks-for-distribution-and-uncertainty-estimation

https://github.com/Kyushik/Predictive-Uncertainty-Estimation-using-Deep-Ensemble
Collection Collection containing
  • Deep Ensembles
  • Stochastic Weight-Averaging Gaussian
  • Kronecker-Factored Laplace Approximation
A. Ashukha, A. Lyzhov, D. Molchanov and D. Vetrov, "Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning", ICLR 2020 yes PyTorch https://github.com/bayesgroup/pytorch-ensembles
Collection Collection containing
  • Deep Ensembles
  • Bayes by Backprop
  • Monte Carlo Dropout
  • Temperature scaling
- no PyTorch https://github.com/cpark321/uncertainty-deep-learning
Collection Collection containing
  • Bayes by Backprop
  • Monte Carlo Dropout
  • Stochastic gradient Langevin dynamics
  • Kronecker-Factored Laplace Approximation
  • Stochastic Gradient Hamiltonian Monte Carlo
- no PyTorch https://github.com/JavierAntoran/Bayesian-Neural-Networks

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published