NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 configuration for YOLO models
Important: please export the ONNX model with the new export file, generate the TensorRT engine again with the updated files, and use the new config_infer_primary file according to your model
- DeepStream tutorials
- Updated INT8 calibration
- Support for segmentation models
- Support for classification models
- Support for INT8 calibration
- Support for non square models
- Models benchmarks
- Support for Darknet models (YOLOv4, etc) using cfg and weights conversion with GPU post-processing
- Support for YOLO-NAS, PPYOLOE+, PPYOLOE, DAMO-YOLO, YOLOX, YOLOR, YOLOv8, YOLOv7, YOLOv6 and YOLOv5 using ONNX conversion with GPU post-processing
- GPU bbox parser (it is slightly slower than CPU bbox parser on V100 GPU tests)
- Support for DeepStream 5.1
- Custom ONNX model parser (
NvDsInferYoloCudaEngineGet
) - Dynamic batch-size for Darknet and ONNX exported models
- INT8 calibration (PTQ) for Darknet and ONNX exported models
- New output structure (fix wrong output on DeepStream < 6.2) - it need to export the ONNX model with the new export file, generate the TensorRT engine again with the updated files, and use the new config_infer_primary file according to your model
- Requirements
- Suported models
- Benchmarks
- dGPU installation
- Basic usage
- Docker usage
- NMS configuration
- INT8 calibration
- YOLOv5 usage
- YOLOv6 usage
- YOLOv7 usage
- YOLOv8 usage
- YOLOR usage
- YOLOX usage
- DAMO-YOLO usage
- PP-YOLOE / PP-YOLOE+ usage
- YOLO-NAS usage
- Using your custom model
- Multiple YOLO GIEs
- Ubuntu 20.04
- CUDA 12.1 Update 1
- TensorRT 8.5 GA Update 2 (8.5.3.1)
- NVIDIA Driver 525.125.06 (Data center / Tesla series) / 530.41.03 (TITAN, GeForce RTX / GTX series and RTX / Quadro series)
- NVIDIA DeepStream SDK 6.3
- GStreamer 1.16.3
- DeepStream-Yolo
- Ubuntu 20.04
- CUDA 11.8
- TensorRT 8.5 GA Update 1 (8.5.2.2)
- NVIDIA Driver 525.85.12 (Data center / Tesla series) / 525.105.17 (TITAN, GeForce RTX / GTX series and RTX / Quadro series)
- NVIDIA DeepStream SDK 6.2
- GStreamer 1.16.3
- DeepStream-Yolo
- Ubuntu 20.04
- CUDA 11.7 Update 1
- TensorRT 8.4 GA (8.4.1.5)
- NVIDIA Driver 515.65.01
- NVIDIA DeepStream SDK 6.1.1
- GStreamer 1.16.2
- DeepStream-Yolo
- Ubuntu 20.04
- CUDA 11.6 Update 1
- TensorRT 8.2 GA Update 4 (8.2.5.1)
- NVIDIA Driver 510.47.03
- NVIDIA DeepStream SDK 6.1
- GStreamer 1.16.2
- DeepStream-Yolo
- Ubuntu 18.04
- CUDA 11.4 Update 1
- TensorRT 8.0 GA (8.0.1)
- NVIDIA Driver 470.63.01
- NVIDIA DeepStream SDK 6.0.1 / 6.0
- GStreamer 1.14.5
- DeepStream-Yolo
- Ubuntu 18.04
- CUDA 11.1
- TensorRT 7.2.2
- NVIDIA Driver 460.32.03
- NVIDIA DeepStream SDK 5.1
- GStreamer 1.14.5
- DeepStream-Yolo
- JetPack 5.1.2 / 5.1.1 / 5.1
- NVIDIA DeepStream SDK 6.2
- DeepStream-Yolo
- Darknet
- MobileNet-YOLO
- YOLO-Fastest
- YOLOv5
- YOLOv6
- YOLOv7
- YOLOv8
- YOLOR
- YOLOX
- DAMO-YOLO
- PP-YOLOE / PP-YOLOE+
- YOLO-NAS
git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
cd DeepStream-Yolo
2. Download the cfg
and weights
files from Darknet repo to the DeepStream-Yolo folder
-
DeepStream 6.3 on x86 platform
CUDA_VER=12.1 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.2 on x86 platform
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.1.1 on x86 platform
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.1 on x86 platform
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 on x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 5.1 on x86 platform
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 on Jetson platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 / 5.1 on Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
[property]
...
custom-network-config=yolov4.cfg
model-file=yolov4.weights
...
NOTE: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
...
force-implicit-batch-dim=1
...
deepstream-app -c deepstream_app_config.txt
NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
NOTE: If you want to use YOLOv2 or YOLOv2-Tiny models, change the deepstream_app_config.txt
file before run it
...
[primary-gie]
...
config-file=config_infer_primary_yoloV2.txt
...
-
x86 platform
nvcr.io/nvidia/deepstream:6.3-gc-triton-devel nvcr.io/nvidia/deepstream:6.3-triton-multiarch
-
Jetson platform
nvcr.io/nvidia/deepstream-l4t:6.3-samples nvcr.io/nvidia/deepstream:6.3-triton-multiarch
NOTE: To compile the
nvdsinfer_custom_impl_Yolo
, you need to install the g++ inside the containerapt-get install build-essential
NOTE: With DeepStream 6.3, the docker containers do not package libraries necessary for certain multimedia operations like audio data parsing, CPU decode, and CPU encode. This change could affect processing certain video streams/files like mp4 that include audio track. Please run the below script inside the docker images to install additional packages that might be necessary to use all of the DeepStreamSDK features:
/opt/nvidia/deepstream/deepstream/user_additional_install.sh
To change the nms-iou-threshold
, pre-cluster-threshold
and topk
values, modify the config_infer file
[class-attrs-all]
nms-iou-threshold=0.45
pre-cluster-threshold=0.25
topk=300
NOTE: Make sure to set cluster-mode=2
in the config_infer file.
You can get metadata from DeepStream using Python and C/C++. For C/C++, you can edit the deepstream-app
or deepstream-test
codes. For Python, your can install and edit deepstream_python_apps.
Basically, you need manipulate the NvDsObjectMeta
(Python / C/C++) and NvDsFrameMeta
(Python / C/C++) to get the label, position, etc. of bboxes.
My projects: https://www.youtube.com/MarcosLucianoTV