Skip to content

我的AI学习笔记。包括b站up主deep_thoughts的PyTorch课程笔记和相关代码;北邮深度学习与数字视频PPT代码。

Notifications You must be signed in to change notification settings

JayceNing/AI_study_notes

Repository files navigation

AI_study_notes

我的AI学习笔记(基于pytorch编程)

  • 按不同模型整理到不同的文件夹
  • 各文件夹中包含 jupyter notebook 笔记,所涉及的图片及论文

目录

PyTorch基础

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】
    • 01_PyTorch介绍与张量的创建
    • 02_PyTorch张量的运算API(上)
    • 03_PyTorch张量的运算API(下)
    • 04_PyTorch的Dataset与DataLoader详细使用教程
    • 05_深入刨析PyTorch_DataLoader源码
    • 06_PyTorch中搭建分类网络实例
    • 07_深入刨析PyTorch_nnModule源码
    • 08_深入刨析PyTorch的state_dict_parameters_modules源码
    • 09_深入刨析PyTorch的nn_Sequential及ModuleList源码
    • 10_PyTorch_autograd使用教程
    • 11_PyTorch中如何进行向量微分矩阵微分与计算雅可比行列式
    • 12_如何在PyTorch中训练模型
    • 13_详细推导自动微分Forward与Reverse模式
    • 14_保存与加载PyTorch训练的模型和超参数
    • 15_Dropout原理及其源码实现
    • 16_PyTorch中进行卷积残差模块算子融合
    • 52_Excel/Csv文件数据转成PyTorch张量导入模型代码逐行讲解

Loss Function

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】
    • 55_PyTorch的交叉熵、信息熵、二分类交叉熵、负对数似然、KL散度、余弦相似度的原理与代码讲解

CNN

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 22_PyTorch nn.Conv2d卷积网络使用教程
    • 23_手写并验证滑动相乘实现PyTorch二维卷积
    • 24_手写并验证向量内积实现PyTorch二维卷积
    • 25_手写实现nn.TransposedConv转置卷积
    • 26_手写卷积与转置卷积的代码总结
    • 27_手写实现PyTorch的DilatedConv和GroupConv

RNN

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 29_PyTorch RNN的原理及其手写复现

LSTM

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 30_PyTorch_LSTM和LSTMP的原理及其手写复现

GRU

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 31_PyTorch_GRU的原理及其手写复现

GCNN

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 32_基于PyTorch的文本分类项目模型与训练代码讲解

Transformer

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • P_18~P_21: Transformer难点理解与实现

Vision Transformer(ViT)

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 28_Vision Transformer(ViT)模型原理及PyTorch逐行实现

Masked Auto Encoder(MAE)

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 42_Masked_AutoEncoder(MAE)论文导读与模型详细介绍
    • 43_逐行讲解Masked_AutoEncoder(MAE)的PyTorch代码

ConvMixer

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 17_ConvMixer模型原理及其PyTorch逐行实现

ConvNeXt

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 38_ConvNeXt论文导读与模型精讲
    • 39_ConvNeXt模型代码逐行讲解
    • 40_ConvNeXt分布式训练代码逐行讲解

U-Net

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 56_U-Net用于图像分割以及人声伴奏分离原理代码讲解

ResNet

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 41_ResNet模型精讲以及PyTorch复现逐行讲解
    • 51_基于PyTorch_ResNet18的果蔬分类逐行代码讲解

VAE

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 68_VQVAE预训练模型的论文原理及PyTorch代码逐行讲解

Diffusion Models

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:
    • 54_Probabilistic_Diffusion_Model概率扩散模型理论与完整PyTorch代码详细解读
    • 57_Autoregressive_Diffusion_Model自回归扩散模型用于序列预测论文讲解
    • 58_Improved_Diffusion的PyTorch代码逐行深入讲解
    • 62_Score_Diffusion_Model分数扩散模型理论与完整PyTorch代码详细解读
    • 63_必看!概率扩散模型(DDPM)与分数扩散模型(SMLD)的联系与区别
    • 64_扩散模型加速采样算法DDIM论文精讲与PyTorch源码逐行解读
    • 66_Classifier_Guided_Diffusion条件扩散模型论文与PyTorch代码详细解读

CLIP

  • 来自b站up主deep_thoughts 合集【PyTorch源码教程与前沿人工智能算法复现讲解】:

    • 59_基于CLIP_ViT模型搭建相似图像检索系统
  • 来自b站up主 迪哥带你学CV 神器CLIP为多模态领域带来了哪些革命?迪哥2小时精讲OpenAI神器—CLIP模型,原理详解+代码复现!:

    • CLIP 模型解读 (HuggingFace Transformers 库 CLIP 演示)

【北邮版CS231N】深度学习与数字视频

  • 来自北京邮电大学门爱东2022秋季学期研究生课程

About

我的AI学习笔记。包括b站up主deep_thoughts的PyTorch课程笔记和相关代码;北邮深度学习与数字视频PPT代码。

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published