This is the manual for the head start at berkeley research computing cluster
ssh username@hpc.brc.berkeley.edu
/global/home/username
only have 10 GB limit/global/scratch/<username>
has infinite storage
# sending to the server
scp (-r) local_path/A username@dtn.brc.berkeley.edu:path/A
# receive from the server
scp (-r) username@dtn.brc.berkeley.edu:path/A local_path/A
wget https://raw.githubusercontent.com/amix/vimrc/master/vimrcs/basic.vim
mv basic.vim ~/.vimrc
- i: insert before the cursor
- Esc: exit insert mode
- Esc+:w: write (save) the file, but don't exit
- Esc+:q: quit (fails if there are unsaved changes)
- Esc+:q!: quit and throw away unsaved changes
- Download the anaconda
wget https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh
bash Anaconda3-2020.11-Linux-x86_64.sh
- add the path
echo 'export PATH=“/global/scratch/<username>/<anaconda-path>/bin:$PATH”' >> ~/.bashrc
source ~/.bashrc
module load python
Then, create the conda environment as usual.
Since the disk quota in the local storage is limited, we need to change the location using the following commands (https://stackoverflow.com/questions/67610133/how-to-move-conda-from-one-folder-to-another-at-the-moment-of-creating-the-envi)
# create a new pkgs_dirs (wherever, doesn't have to be hidden)
mkdir -p /big_partition/users/user/.conda/pkgs
# add it to Conda as your default
conda config --add pkgs_dirs /big_partition/users/user/.conda/pkgs
# create a new envs_dirs (again wherever)
mkdir -p /big_partition/users/user/.conda/envs
# add it to Conda as your default
conda config --add envs_dirs /big_partition/users/user/.conda/envs
- use cuda on brc
module load cuda/10.2
export XLA_FLAGS=--xla_gpu_cuda_data_dir=/global/software/sl-7.x86_64/modules/langs/cuda/10.2
module avail
- List all available modulefiles.module list
- List modules loaded.module add|load _modulefile_ ...
- Load modulefile(s).module rm|unload _modulefile_ ...
- Remove modulefile(s).
if the code uses matlab, make sure you load the matlab module: module load matlab
sbatch myjob.sh
- Submit a job, wheremyjob.sh
is a SLURM job script.squeue -u $USER
- Check your current jobsscancel [jobid]
sinfo
- View the status of the cluster's compute nodes
sacctmgr -p show associations user=$USER
--- show which partition can be used in the account
One example of myjob.sh
#!/bin/bash
# Job name:
#SBATCH --job-name=test
#
# Account:
#SBATCH --account=co_esmath
#
# Partition:
#SBATCH --partition=savio3
#
# Quality of Service:
#SBATCH --qos=esmath_savio3_normal
# Number of nodes:
#SBATCH --nodes=1
# Processors per task
#SBATCH --cpus-per-task=2
#
# Wall clock limit:
#SBATCH --time=24:00:00
# Email Notification
#SBATCH --mail-type=END, FAIL
#SBATCH --mail-user=google@gmail.com
#
## Command(s) to run:
# load some necessary software
module load matlab mpi
# if one use conda for the python environment
conda activate myenv
# run my jobs
bash myscript.sh
# python jobs
python myscript.py
# matlab jobs
matlab < main.m
One example of myjob.sh
(GPU Instance)
#!/bin/bash
# Job name:
#SBATCH --job-name=test
#
# Account:
#SBATCH --account=co_esmath
#
# Partition:
#SBATCH --partition=savio3_gpu
#
# Quality of Service:
#SBATCH --qos=esmath_gpu3_normal
# Number of nodes:
#SBATCH --nodes=1
# Processors per task
#SBATCH --cpus-per-task=2
#
#SBATCH --gres=gpu:GTX2080TI:1
# Wall clock limit:
#SBATCH --time=24:00:00
# Email Notification
#SBATCH --mail-type=END, FAIL
#SBATCH --mail-user=google@gmail.com
#
## Command(s) to run:
# load gpu related
module load gcc openmpi
module load cuda/11.2
module load cudnn/7.0.5
export CUDA_PATH=/global/software/sl-7.x86_64/modules/langs/cuda/11.2
export LD_LIBRARY_PATH=$CUDA_PATH/lib64:$LD_LIBRARY_PATH
# if one use conda for the python environment
conda activate myenv
# python jobs
XLA_FLAGS=--xla_gpu_cuda_data_dir=/global/software/sl-7.x86_64/modules/langs/cuda/11.2 python myscript.py
- you can find the hardware config
pip install sysflow
slurm config
slurm run [python test.py --arg1 5 --arg2 3]
from sysflow.job.slurm import Slurm
# use the last config
slurm = Slurm()
# change the config
# slurm = Slurm(job_name='hello-word', email='abc@abc.com', conda_env='qrl')
# change the account or partition
# slurm = Slurm(account='co_esmath', qos='esmath_savio3_normal', partition='savio3')
slurm.run('python test.py')
slurm config --account fc_esmath --qos savio_normal
slurm config --account co_esmath --qos esmath_savio3_normal --partition savio3 --task_per_node 32
slurm config --account co_esmath --qos savio_lowprio --partition savio2 --task_per_node 24