We use Gibson and HM3D dataset.
The gibson dataset can be downloaded from here. We use scenes Greigsville
Denmark
Cantwell
Eudora
Pablo
Ribera
Swormville
Eastville
Elmira
.
The HM3D dataset can be downloaded from here. We use scenes DBjEcHFg4oq
mscxX4KEBcB
QKGMrurUVbk
oPj9qMxrDEa
CETmJJqkhcK
.
The data should be organized as
-- habitat-api
|
- - scene_datasets
|
- - hm3d
| |
| - - DBjEcHFg4oq
| ...
|
- - gibson
|
- - Denmark
...
We highly recommend using the docker image
# pull image
docker pull wen3d/agslam:latest
# run docker image
docker run -it --runtime=nvidia \
-e QT_X11_NO_MITSHM=1 \
-e NVIDIA_VISIBLE_DEVICES=all \
-e NVIDIA_DRIVER_CAPABILITIES=all \
--cpus=16 --memory=48g --shm-size=16g \
-v /home/kostas-lab/Documents/release:/root \
-v /home/kostas-lab/data:/data \
--cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
-p 4461:80 -p 4462:5900 -p 4463:22 \
-e VNC_PASSWORD=YOUR_PASSWORD -e HTTP_PASSWORD=YOUR_PASSWORD \
wen3d/agslam:latest
For GUI access, please refer to this repo.
You can access the vnc in your browser through localhost:4461
We use habitat-sim and habitat-lab (both are v0.2.4). Please refer to the documentation here.
# In your docker container, clone the repo
git clone xxx --recursive
cd thirdparty/simple-knn && python -m pip install -e .
cd thirdparty/diff-gaussian-rasterization-modified && python -m pip install -e .
# The dataset dir can be specified by the `DATADIR` variable
# FisherRF results
bash scripts/gibson.sh configs/mp3d_gaussian_FR_eccv.yaml
# Frontier
bash scripts/gibson.sh configs/mp3d_gaussian_FR_frontier.yaml
# UPEN
bash scripts/gibson.sh configs/mp3d_gaussian_UPEN_fbe.yaml
# HM3D results
bash scripts/mp3d.sh configs/mp3d_gaussian_FR_eccv.yaml
Pretrained Gaussians can be found here.