This is the repo for SenSys 2022 paper: "Gaze Tracking on Any Surface with Your Phone" and TMC 24 paper: "Practical Gaze Tracking on Any Surface with Your Phone".
Project website: ASGaze
Demo video:
The program has been tested in the following environment:
- Python 3.7
- Numpy 1.21.4
- Pytorch 1.10.3
- torchvision 0.11.1
- opencv-python 3.4.2.17
- dlib 19.17
|-- iris_boundary_detector
|-- data_sources
|-- detection.ipynb // detect and save eye regions using dlib library
|-- cvdata // facial landmarks used in "detection.ipynb"
|-- ASGaze_data.ipynb // Pytorch Dataset prepared for train and inference
|-- transform.ipynb // data augmentation
|-- graph
|-- vgg_unet.ipynb // backbone of segmentation network
|-- losses.ipynb // loss functions used to train segmentation network
|-- utils
|-- load_model.ipynb // helper functions used to load and save model
|-- metrics.ipynb // metrics used to evaluate segmentation network
|-- refinement.ipynb // leverage temporal relationship to refine iris boundary
|-- configs
|-- segmentation_train.json // config parameters for training network
|-- gaze_inference.json // config parameters for output inferenced iris boundary
|-- train.ipynb // main workflow of train
|-- inference.ipynb // main workflow of inference
|-- gaze_ray_estimator
|-- cone_model.ipynb // cone model used to establish the relationship between 3D circle and 2D ellipse
|-- estimator.ipynb // main workflow of gaze ray estimator
|-- mapping
|-- mapping_principle.ipynb // mapping principle
|-- shape_constrained.ipynb // proposed mapping method
|-- Database // conclude data sample, pretrained model and camera matrix
|-- setup.ipynb // remove ambiguity and calculate offsets (one-time effort)
|-- main.ipynb // main workflow of ASGaze
-
Download and unzip the
Database
folders. Detailed descriptions are in Database.md. -
Change the "dir", "runs_dir" of data and pretrained model in
gaze_inference.json
to the path on your machine. -
Run the
main.ipynb
script and you can visualize the tracking process, just like the demo video.
If you find our work useful in your research, please consider citing:
@inproceedings{cao2022gaze,
title={Gaze Tracking on Any Surface with Your Phone},
author={Cao, Jiani and Lin, Chengdong and Liu, Yang and Li, Zhenjiang},
booktitle={Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems},
pages={320--333},
year={2022}
}
@article{cao2024practical,
title={Practical Gaze Tracking on Any Surface with Your Phone},
author={Cao, Jiani and Chen, Jiesong and Lin, Chengdong and Liu, Yang and Wang, Kun and Li, Zhenjiang},
journal={IEEE Transactions on Mobile Computing},
year={2024},
publisher={IEEE}
}
You may use this source code for academic and research purposes. Commercial use is strictly prohibited.